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Abstract
This paper describes Guided Search 6.0 (GS6), a revised model of visual search. When we encounter a scene, we can see
something everywhere. However, we cannot recognize more than a few items at a time. Attention is used to select items so that
their features can be “bound” into recognizable objects. Attention is “guided” so that items can be processed in an intelligent
order. In GS6, this guidance comes from five sources of preattentive information: (1) top-down and (2) bottom-up feature
guidance, (3) prior history (e.g., priming), (4) reward, and (5) scene syntax and semantics. These sources are combined into a
spatial “priority map,” a dynamic attentional landscape that evolves over the course of search. Selective attention is guided to the
most active location in the priority map approximately 20 times per second. Guidance will not be uniform across the visual field.
It will favor items near the point of fixation. Three types of functional visual field (FVFs) describe the nature of these foveal
biases. There is a resolution FVF, an FVF governing exploratory eye movements, and an FVF governing covert deployments of
attention. To be identified as targets or rejected as distractors, items must be compared to target templates held in memory. The
binding and recognition of an attended object is modeled as a diffusion process taking > 150ms/item. Since selection occurs more
frequently than that, it follows that multiple items are undergoing recognition at the same time, though asynchronously, making
GS6 a hybrid of serial and parallel processes. In GS6, if a target is not found, search terminates when an accumulating quitting
signal reaches a threshold. Setting of that threshold is adaptive, allowing feedback about performance to shape subsequent
searches. Simulation shows that the combination of asynchronous diffusion and a quitting signal can produce the basic patterns
of response time and error data from a range of search experiments.
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Introduction

Visual search has been a major topic of research for decades.
There are a number of reasons for this. To begin, we spend a
great deal of time doing search tasks. Many of these are so fast
and seemingly trivial that we don’t tend to think of them as
searches. Think, for example, about eating dinner. You search
for the fork, then the potatoes, then the salt, then the potatoes
again, then your drink, then the napkin, and so forth. As you
drive, you look for specific items like the exit sign at the same
time as you are searching for broad categories like “danger.”

In more specialized realms, radiologists search images for
signs of cancer, transportation security officers search carry-
on baggage for threats, and so forth. Search is a significant,
real-world task. At the same time, it has proven to be a very
productive experimental paradigm in the lab. In a classic lab-
oratory search task, observers might be asked to look for a
target that is present on 50% of trials among some variable
number of distractors. The number of items in the display is
known as the “set size” and very systematic and replicable
functions relate response time (or “reaction time,”RT in either
case) and/or accuracy to that set size (Wolfe, 2014).

For some tasks (as shown in Fig. 1a and b), the number of
distractors has little or no impact. The target seems to sim-
ply “pop-out” of the display (Egeth, Jonides, &Wall, 1972)
and, indeed, may “capture” attention, even if it is not the
target of search (Jonides & Yantis, 1988; Theeuwes, 1994).
The slope of the RT x set size functions will be near (but
typically a little greater than) 0 ms/item (Buetti, Xu, &
Lleras, 2019). For other tasks, the time required to find the
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target increases (typically, more or less linearly) with the set
size. In some cases, this reflects underlying limits on visual
resolution. Thus, if the task is to find “TLT” among other
triplets composed of Ts and Ls, a combination of acuity and
crowding limits (Levi, Klein, & Aitsebaomo, 1985;
Whitney & Levi, 2011) will require that each triplet be
foveated in series until the target is found or the search is
abandoned (Fig. 1c and d). Since the eyes fixate on three to
four items per second, the slope of the RT x set size

functions will be ~250–350 ms/item for target-absent trials
(when all items need to be examined in order to be sure that
the target is not present). Slopes for target-present trials will
be about half that because observers will need to examine
about half of the items on average before stumbling on the
target. Figure 1e and f show a more interesting case. Here
the target, a digital “2,” is presented among digital 5s. The
items are large and the display sparse enough to avoid most
effects of crowding. Nevertheless, slopes of the target-
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absent trials will tend to be around 90 ms/item on absent
trials and, again, about half that on target-present trials
(Wolfe, Palmer, & Horowitz, 2010). This will be true, even
if the eyes do not move (Zelinsky & Sheinberg, 1997).

These patterns in the data were uncovered in the 1960s and
1970s (Kristjansson & Egeth, 2020) and formed the basis of
Anne Treisman’s enduringly influential Feature Integration
Theory (FIT) (Treisman & Gelade, 1980). Building on an
architecture proposed by Neisser (1967), Treisman held that
there was an initial, “preattentive” stage of processing, in
which a limited set of basic features like color and orientation
could be processed in parallel across the visual field. In this,
she was inspired by the then-novel physiological findings
showing cortical cells and areas that appeared to be special-
ized for these features (e.g., Zeki, 1978). In behavioral exper-
iments, a unique feature, if it was sufficiently different from its
neighbors, would pop-out and be detected, independent of the
number of distractor items.

Basic features might be processed in parallel in separate cor-
tical maps, but we do not see separate features. We see objects
whose features are bound together. Treisman proposed that this
“binding” required selective attention to connect isolated features
to a single representation (Roskies, 1999; Treisman, 1996;Wolfe
&Cave, 1999). This attention was capacity limited, meaning that
only one or a very few items could be attended and bound at any
given time. As a result, while a salient unique feature could be
found in parallel, all other types of targets would require serial,
selective attention from item to item. This proposed serial/parallel
dichotomy and FIT more generally have proven to be extremely
influential and persistent (~14,000 citations for Treisman &
Gelade, 1980, in Google Scholar at last check).

Influential or not, it became clear over the course of the
1980s that FIT was not quite correct. The core empirical chal-
lenge came from searches for conjunctions of two features.
For example, observers might be asked to search for a red
vertical target among red horizontal and green vertical
distractors. Identification of this target would require binding
of color and orientation and, thus, it should require serial
search. However, it became clear that conjunction searches
were often more efficient than FIT would predict (Egeth,
Virzi, & Garbart, 1984; McLeod, Driver, & Crisp, 1988;
Nakayama & Silverman, 1986; Quinlan & Humphreys,
1987; Wolfe, Cave, & Franzel, 1989). The explanation can
be illustrated by a version of a conjunction search used by
Egeth, Virzi, and Garbart (1984). If we return to Fig. 1e–f,
suppose you knew that the “2” was purple. It should be intu-
itively obvious that, while search may still be necessary, it will
be unnecessary to attend to green items. If just half the items
are purple, then just half the items are relevant to search and
the slopes of the RT x set size functions will be cut in half,
relative to the case where there is no color information.

In 1989,Wolfe, Cave, and Franzel (1989) proposed that the
preattentive feature information could be used to “guide” the

serial deployment of attention; hence the name of the model,
“Guided Search” (GS). The original version of GS was other-
wise quite similar to FIT. The core difference was that, while
FIT proposed a dichotomy between parallel and serial search
tasks, GS proposed a continuum based on the effectiveness of
guidance. Pop-out search (Fig. 1a and b) arose when
preattentive feature information guided attention to the target
the first time, every time. A search for a 2 among 5s would be
unguided because both target and distractors contained the
same basic features. Results for conjunction searches lay in
between, reflecting different amounts of guidance.

Treisman recognized the problem with the original FIT and
proposed her own accounts in subsequent papers (e.g.,
Treisman & Sato, 1990). It was a subject of some annoyance
to her that she continued to get taken to task for theoretical
positions that she no longer held. Indeed, to this day, 40 years
after FIT appeared, a simple two-stage, parallel-serial dichoto-
my is asserted in textbooks and by many research papers, espe-
cially outside the core disciplines of Experimental Psychology/
Cognitive Science. To avoid this fate, when the time came to
revise Guided Search in the light of new research, the paper was
entitled “Guided Search 2.0: A revised model of visual search”
(Wolfe, 1994a). Subsequent revisions have also been given
version numbers. GS2 remains the most cited of the versions.
GS3 (Wolfe & Gancarz, 1996) was something of a dead end,
and GS4 (Wolfe, 2007) was published as a book chapter and,
thus, less widely known. GS5 (Wolfe, Cain, Ehinger, & Drew,
2015) did not get beyond being a conference talk before being
derailed by new data. The goal of the present paper is to de-
scribe Guided Search 6 (GS6). Since GS2 is the best known
version of GS, this paper will frame GS6 in terms of the major
changes from GS2. GS6 is needed because we know a lot more
about search than we knew in 1980 or 1994. Still, this model
presented here is an evolution and not a repudiation of the core
ideas of FIT and the earlier versions of GS. Though some
would disagree (Di Lollo, 2012; Hulleman & Olivers, 2017;
Kristjansson, 2015, Zelinsky et al., 2020), the basic ideas from
40 years ago have proven very durable.

Guided Search 2.0

Figure 2 offers an illustration of GS2. The numbers are re-
ferred to in the summary of the key ideas, presented below:

1. Information from the world….
2. … is represented in the visual system. The nature of that

representation will depend on the position of items in the
visual field, properties of early visual channels, etc. In the
early stages of processing, this will involve extraction of
information about basic features like color and
orientation.
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3. Capacity limitations require that many activities, notably
object recognition, can only be performed on one or a
very few items at a time. Thus, there is a tight bottleneck
that passes only the current object of attention for
capacity-limited processing (e.g., “binding”).

4. An item, selected by attention, is bound, recognized, and
tested to determine if it is a target or a distractor. If it is a
match, search can end. If there are no matches, search will
terminate when a quitting threshold (not diagrammed
here) is reached.

5. Importantly, selection is rarely random. Access to the bot-
tleneck is guided by a “priority map” that represents the
system’s best guess as to where to deploy attention next.
Attention will be deployed to the most active location on
the map.

6. One source of priority map guidance comes from “bot-
tom-up” salience: Salience is based on coarse representa-
tions of a limited number of basic features like color, size,
etc. Bottom-up is defined as “stimulus-driven”.

7. Attentional priority is also determined by “top-down”
guidance. “Top-down” guidance represents the implicit
or explicit goals of the searcher. Top-down guidance is
based on the basic features of the target as represented in
memory. That is, if the observer was searching for a red
vertical line, the red color and vertical orientation of that
target could be used to guide attention.

8. Both of these sources of guidance are combined in a
weighted manner to direct attention to the next
item/location. If that item is a distractor, that location is
suppressed (perhaps via “inhibition of return” (IOR; R.
Klein, 1988)), and attention is deployed to the next
highest peak on the map. This guided search continues
until the target is found or the search terminates

From GS2 to GS6

The core ideas of GS have remained relatively constant
over time, but new data require modifications of each of
the main components: preattentive features, guidance, se-
rial versus parallel processing, and search termination. In
addition, the model requires consideration of topics that
were not discussed in GS2; notably, the contribution of
“non-selective” processing, the role of eccentricity (func-
tional visual fields; FVFs), the role of non-selective pro-
cessing (scene gist, ensembles, etc.), and the nature of the
search template (or templates) and their relationship to
working memory and long-term memory.

Here, in the same format as the GS2 diagram and descrip-
tion, Fig. 3 illustrates GS6. This diagram and description will
introduce the topics for the bulk of the paper.

1. Information from the world is represented in the visual
system. The nature of that representation will depend on
the position in the visual field relative to fixation (eccen-
tricity effects, crowding, etc.). Thus, an item near fixa-
tion will be more richly represented than one further
away. These eccentricity constraints define one of three
types of functional visual field (FVF) that are relevant
for search (see #10, below).

2. Some representation of the visual input is available to
visual awareness at all points in the field, in parallel, and
via a non-selective pathway that was not considered in
GS2. Thus, you see something everywhere. Ensemble
statistics, scene gist, and other rapidly extracted attri-
butes generally do not require selective attention and
can be attributed to this non-selective pathway (Wolfe,
Vo, Evans, & Greene, 2011).

Fig. 2 A schematic representation of Guided Search 2.0.
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3. There are capacity limits that require that many tasks can
only be performed on one (or a very few) item/s at a
time. Notably, for present purposes, this includes object
recognition. Selective attention, as used here, refers to
the processes that determine which items or regions of
space will be passed through the bottleneck. Items are
selected by attention at a rate of ~20 Hz, though this will
vary with task difficulty (Wolfe, 1998).

4. Access to the bottleneck (i.e., attentional selection) is
“guided” (hence Guided Search).

5. In GS6, there are five types of guidance that combine
to create an attentional “Priority Map.” Bottom-up
(salience) and top-down (user/template-driven) guid-
ance by preattentive visual features are retained from
all previous versions of GS. Newer data support
guidance by the history of prior attention (e.g., prim-
ing), value (e.g., rewarded features), and, very impor-
tantly, guidance from the structure and meaning of
scenes.

6. The selected object of attention is represented inworking
memory (speculatively, the limits on what can be select-
ed at any given time may be related to the limits on the
capacity of WM). The contents of WM can prime sub-
sequent deployments of attention. WM also holds the
top-down “guiding template” (i.e., the template that
guides toward target attributes like “yellow” and
“curved” if you are looking for a banana).

7. A second template is held in “activated long-term
memory” (ALTM), a term referring to a piece of
LTM relevant to the current task. This “target tem-
plate” can be matched against the current object of
attention in WM in order to determine if that object
of attention is a target item. Thus, the target template
is used to determine that this item is not just yellow
and curved. Is it, in fact, the specific banana that is
being looked for? In contrast to the one or two guid-
ing templates in WM, ALTM can hold a very large
number of target templates (as in Hybrid Search tasks
having as many as 100 possible targets (Wolfe,
2012)). Those target templates might be highly spe-
cific (this banana in this pose) or much more general
(e.g., any fruit).

8. The act of determining if an item, selected by attention,
and represented in WM, is a target can be modeled as a
diffusion process, with one diffuser for every target tem-
plate that is held in ALTM. If a target is found, it can be
acted upon.

9. A separate diffuser accumulates toward a quitting thresh-
old. This will, eventually, terminate search if a target is
not found before the quitting threshold is reached.

10. Not shown: In addition to a resolution Functional Visual
Field (FVF), mentioned in #1 above, two other FVFs
govern search. An attentional FVF governs covert de-
ployments of attention during a fixation. That is, if you

Fig. 3 A schematic representation of Guided Search 6.0.
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are fixated at one point, your choice of items to select is
constrained by this attentional FVF. An explorational
FVF constrains overt movements of the eyes as they
explore the scene in search of a target

A short-hand for capturing the main changes in GS6 might
be that there are now two pathways, two templates, two dif-
fusion mechanisms, three FVFs, and five sources of guidance.
The paper is divided into six sections: (1) Guidance, (2) The
search process, (3) Simulation of the search process, (4)
Spatial constraints and functional visual fields, (5) Search
templates, and 6) Other search tasks.

Five forms of guidance

In this section, we review the two “classic” forms of guidance:
top-down and bottom-up feature guidance. Then we argue for
the addition of three other types of guidance: history (e.g.,
priming), value, and, the most important of these, scene guid-
ance. The division of guidance into exactly five forms is less
important than the idea that there are multiple sources of guid-
ance that combine to create an attention-directing landscape
here called a “priority map.”

What do we know about classic top-down and
bottom-up guidance by preattentive features?

To begin, “preattentive” is an unpopular term in some cir-
cles; in part, because it can be used, probably incorrectly,
to propose that some pieces of the brain are “preattentive”
or to propose that preattentive processing occurs for the
first N ms and then ends. The term is useful in the follow-
ing sense. If we accept the existence of selective attention
and if we accept that, by definition, we cannot selectively
attend to everything at once, it follows that, when a stim-
ulus appears, some aspects have not been selected yet. To
the extent that they are being processed, that processing is
tautologically preattentive. A stimulus feature that can be
processed in this way is, thus, a preattentive feature. This is
not the end of the discussion. For instance, if an item is
attended and then attention is deployed elsewhere, is its
“post-attentive” state similar to its preattentive state
(Rensink, 2000; Wolfe, Klempen, & Dahlen, 2000)? For
the present, if selective attention is a meaningful term, then
preattentive is a meaningful term as well. Some informa-
tion (e.g., aspects of texture and scene processing) can be
thought of as “non-selective” (Wolfe et al., 2011) in the
sense that, not only are they available before attentional
selection but they have an impact on visual awareness
without the need for attentional selection.

Preattentive feature guidance

A preattentive feature is a property capable of guiding the
deployment of attention. These features are derived from but
are not identical to early visual processing stages. Orientation
serves as a clear example of the difference between early vi-
sion (#1 in Fig. 3) and preattentive guidance (#5) because it
has been the subject of extensive research. For instance, early
visual processes allow for very fine differentiation of the ori-
entation of lines. A half-degree tilt away from vertical is not
hard to detect (Olzak & Thomas, 1986). That detectable dif-
ference will not guide attention. The difference between an
item and its neighbors must be much greater if an attention-
guiding priority signal is to be generated (roughly 10–15°. It
will depend on the stimulus parameters; see Foster & Ward,
1991a, 1991b; Foster & Westland, 1998). Similar effects oc-
cur in color (Nagy & Sanchez, 1990) and, no doubt, they
would be found in other features if tested. Guidance is based
on a coarse representation of a feature. That coarse represen-
tation is not simply the fine representation divided by some
constant. Using orientation, again, as an example, geometri-
cally identical sets of orientations do not produce identical
guidance of attention. The categorical status of the items is
important. Thus, a -10° target among +50 and -50° distractors
is easier to find than a 10° target among -30° and 70°
distractors. The second set of lines is simply a 20° rotation
of the first. Thus, the angular relations between the target and
distractor lines are the same. However, in the first set, the
target is the only steep line whereas in the second set, it is
merely the steepest (Wolfe, Friedman-Hill, Stewart, &
O'Connell, 1992). A target of a unique category is easier to
find (see also Kong, Alais, & Van der Berg, 2017). Again,
there are similar effects in color (Nagy & Sanchez, 1990).

Fine discriminations, like the discrimination that half de-
gree tilt from vertical, rely on information encoded in early
vision and require attention. This can be seen as an example of
re-entrant processing (Di Lollo, Enns, & Rensink, 2000) and/
or support for the Reverse Hierarchy Theory (Hochstein &
Ahissar, 2002). In both cases, the idea is that attention makes
it possible to reach down from later stages of visual processing
of the visual system to make use of fine-grain information
represented in early vision.

Preattentive guidance is complex

It would be lovely if top-down and bottom-up feature guid-
ance could be calculated in a straight-forward manner from
the stimulus, using rules that generalize across different
featural dimensions. Bottom-up salience maps are based on
something like this assumption (e.g., Bisley &Mirpour, 2019;
Itti & Koch, 2000; Li, 2002) and, certainly, there are important
general rules. Duncan and Humphreys (1989) gave a clear
articulation of some of the most basic principles. In general,
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guidance to a target will be stronger when the featural differ-
ences between the target (T) and distractor (D) are larger (TD
differences), and guidance to a target will be stronger when
the featural differences amongst distractors are smaller (DD
similarity). Other more quantitative rules about combining
signals across features are appearing (Buetti et al., 2019;
Lleras et al., 2020). That said, TD and DD distances are not
simple functions of the distance from the one feature value to
another in some unit of the physical stimulus or some unit of
perceptual discriminability like a just noticeable difference
(Nagy & Sanchez, 1990; Nagy, Sanchez, & Hughes, 1990).
Moreover, it is an unfortunate fact that rules that apply to one
guiding feature do not necessarily apply to another guiding
feature, or even to the same feature in a different situation. For
example, it seems quite clear that color and orientation both
guide attention in simple searches for conjunctions of color
and orientation (e.g., Friedman-Hill & Wolfe, 1995). One
would like to imagine that any time that half of the items in
a display had a guiding feature like a specific color or orien-
tation, the other half of the items would be treated as irrelevant
to search. However, that does not appear to be consistently
true. Orientation information can fail to guide and can even
make search less efficient (Hulleman, 2020; Hulleman, Lund,
& Skarratt, 2019). When guidance is provided by previewing
one feature, different features (color, size, orientation) can
show very different patterns of guidance, even if the feature
differences have been equated (Olds & Fockler, 2004). Here,
too, orientation information can actually make search less ef-
ficient. For modeling purposes, using basic salience measures
and basic rules about TD and DD similarity is a decent ap-
proximation but not a full account.

Preattentive processing takes time

Earlier versions of GS (and other accounts of feature guid-
ance) tended to treat the preattentive, feature-processing stage
as a single, essentially instantaneous step in which the features
were processed in parallel across the entire stimulus. If the
target was “red” and “vertical,” that color and orientation
information was immediately available in a priority map,
ready to guide attention. That is not correct. Palmer et al.
(2019) showed that it takes 200–300 ms for even very basic
guidance by color to be fully effective. Lleras and his
colleagues (2020) have produced important insights into the
mechanics of this “parallel,” “preattentive” stage of process-
ing in a series of experiments that show that RTs in basic
feature searches increase with the log of the set size. Even
the most basic of feature searches do not appear to have
completely flat, 0 ms/item slopes (Buetti, Cronin, Madison,
Wang, & Lleras, 2016; Madison, Lleras, & Buetti, 2018).
Lleras et al. (2020) offer an interesting account of the cause
of this log function in their “target contrast signal theory
(TCS)”. They argue that a diffusion process (Ratcliff, 1978)

accumulates information about the difference between each
item and the designated target. Other diffusion models (in-
cluding GS, see below) typically ask how long it takes for
information to accumulate to prove that an item is a target.
TCS emphasizes how long it takes to decide that attention
does not need to be directed to a distractor item. The TCS
model envisions a preattentive stage that ends when all the
items that need to be rejected have been rejected. The remain-
ing items (any targets as well as other “lures” or “candidates”)
are then passed to the next stage. Since diffusion has a random
walk component, some items will take longer than others to
finish. Leite and Ratcliff (2010) have shown that the time
required to end a process with multiple diffusers will be a
log function of the number of diffusers and, in TCS, this
explains the log functions in the data. In more recent work,
Heaton et al. (2020) make the important point that it is a
mistake to think of preattentive processing as something that
stops after some time has elapsed. Preattentive and/or non-
selective processing must be ongoing when a stimulus is vis-
ible. Deployment of attention will be dependent on the priority
map generated by the current state of that preattentive process-
ing and that current state will be continually evolving espe-
cially as the eyes and/or the observer move.

TCS does not explain some important aspects of
preattentive processing (nor is it intended to do so). For ex-
ample, what is happening when the target is simply an odd
item that “pops-out” because it is unique? Thus, in Fig. 4
(which we discuss for other purposes later), the intended tar-
gets are orange. Nevertheless, attention is attracted to the blue
items even though the blue items can be easily rejected as not
orange. They are sufficiently different from their neighbors to
attract attention in a “bottom-up,” stimulus-driven manner.
Regardless, the TCS model and its associated data make the
clear point that the preattentive processing stage will take
some amount of time and that this time will be dependent on
the number of items in the display, even if all items are proc-
essed in parallel.

TCS also raises the possibility that guidance could be as
much about rejecting distractors as it is about guiding toward
targets (Treisman and Sato, 1990); a topic that has seen a
recent burst of interest (e.g., Conci, Deichsel, Müller, &
Töllner, 2019; Cunningham & Egeth, 2016; Stilwell &
Vecera, 2019). In thinking about distractor rejection, it is im-
portant to distinguish two forms of rejection. One could reject
items that do not have the target feature (e.g., in Fig. 4, reject
items that are not orange) or one could reject items that have a
known distractor feature (e.g., reject items that are red).
Friedman-Hill and Wolfe (Exp. 4, 1995) and Kaptein,
Theeuwes, and Van der Heijden (1995) found evidence that
observers could not suppress a set of items on the basis of its
defining feature. In a study of the priming effect, Wolfe,
Butcher, Lee, and Hyle (2003) found that the effects of repeat-
ing target features were much greater than those of repeating
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distractors. Still, the distractor effects were present and subse-
quent work, suggests that distractor inhibition is a contributor
to guidance even if it may take longer to learn and establish
(Cunningham & Egeth, 2016; Stilwell & Vecera, 2020).

Feature guidance can be relational

Over the past decade, Stefanie Becker’s work has emphasized
the role of relative feature values in the guidance of attention
(Becker, 2010; Becker, Harris, York, & Choi, 2017). This is
also illustrated in Fig. 4, where, on the left, the orange targets
are the yellower items, while on the right, the same targets are
the redder items. Attention can be guided by a filter that is not
maximally sensitive to the feature(s) of the target. On the right
side of Fig. 4, for example, it might be worth using a filter
maximally sensitive to “red” even though the target is not red.
The most useful filter will be the one that reveals the greatest
difference between target and distractors (Yu & Geng, 2019).
Targets and distractors that can be separated by a line, drawn
in some feature space, are said to be “linearly separable”
(Bauer, Jolicoeur, & Cowan, 1998; Bauer, Jolicoeur, &
Cowan, 1996). If, as in the middle of Fig. 4, no line in color
space separates targets and distractors, search is notably more
difficult (look for the same orange squares). Some of this is
due to the inability to use Becker’s relational guidance when
targets are not linearly separable from distractors, and some of
the difficulty is due to added bottom-up (DD similarity) noise
produced by the highly salient contrast between the two types
of yellow and red distractors. Note, however, that attention
can still be guided to the orange targets, showing that top-
down guidance is not based entirely on a single relationship
(for more, see Kong, Alais, & Van der Berg, 2016; Lindsey
et al., 2010). Moreover, Buetti et al. (2020) have cast doubt on
the whole idea of linear separability, arguing that performance
in the inseparable case can be explained as a function of per-
formance on each of the component simple feature searches.
In their argument, the middle of Fig. 4 would be explained by
the two flanking searches without the need for an additional
effect of linear separability.

Spatial relations are at least as important as featural rela-
tions in feature guidance. Figure 5 illustrates this point using
density. In the figure, the orange targets and yellow distractors
on the left are the same as those on the right but those orange
targets are less salient and guide attention less effectively be-
cause they are not as physically close to the yellow distractors
(Nothdurft, 2000). An interesting side effect of density is that
the RT x set size function can become negative if increasing
density speeds the search more than the set size effect slows
search (Bravo & Nakayama, 1992).

Feature Guidance is modulated by position in the
visual field

GS2, following Neisser (1967) says “there are parallel pro-
cesses that operate over large portions of the visual field at
one time” (Wolfe, 1994a, p.203). However, it is important to
think more carefully about the spatial aspects of guidance and
preattentive processing.

The visual field is not homogeneous. Of course, we knew
this with regard to attentive vision and object recognition. As
you read this sentence, you need to fixate one word after
another, because acuity falls off with distance from the fovea,
the point of fixation (Olzak & Thomas, 1986). Moreover con-
tours “crowd” each other in the periphery, making them still
harder to perceive correctly (Levi, 2008). Thus, you simply
cannot read words of a standard font size more than a small

Fig. 4 Feature search based on bottom-up salience, top-down relations, and top-down identity

Find

Fig. 5 Density effects in search: Feature differences are easier to detect
when items are closer together
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distance from fixation.What must be true but is little remarked
on, is that preattentive guidance of attention must also be
limited by eccentricity effects.

In Fig. 6, look at the star and report on the color of all the
ovals that you can find. Without moving your eyes, you will
be able to report the purple oval at about 4 o’clock and the blue
isolated oval at 2 o’clock. The same preattentive shape/
orientation information that guides your attention to those
ovals will not guide your attention to the other two ovals
unless you move your eyes. Thus, while preattentive process-
ing may occur across large swaths of the visual field at the
same time, the results of that processing will vary with eccen-
tricity and with the structure of the scene. In that vein, it is
known that there are eccentricity effects in search. Items near
fixation will be found more quickly and these effects can be
neutralized by scaling the stimuli to compensate for the effects
of eccentricity (Carrasco, Evert, Chang, & Katz, 1995;
Carrasco & Frieder, 1997; Wolfe, O'Neill, & Bennett, 1998).

Thinking about search in the real world of complex scenes,
it is clear that the effects of eccentricity on guidance are going
to be large and varied. Returning to Fig. 6, for example, both
color and shape are preattentive features but guidance to
“oval” will fail at a much smaller eccentricity than guidance
to that one “red” spot. Rosenholtz and her colleagues attribute
the bulk of the variation in the efficiency of search tasks to the
effects of crowding and the loss of acuity in the periphery
(Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz, 2011,
2020; Zhang, Huang, Yigit-Elliott, & Rosenholtz, 2015).
Guided Search isn’t prepared to go that far, but it is clear that
crowding and eccentricity will limit preattentive guidance.
Those limits will differ for different features in different situ-
ations, but this topic is vastly understudied. We will return to
these questions in the later discussion of the functional visual
field (FVF). For the present, it is worth underlying the thought
that preattentive guidance will vary as the eyes move in any
normal, real world search.

Levels of selection: Dimensional weighting

Though guidance is shown as a single box (#5 in Fig. 3)
controlling access to selective processing (#4), it is important
to recognize that selection is a type of attentional control, not
one single thing. We have been discussing guidance to spe-
cific features (e.g., blue… or bluest), but attention can also be
directed to a dimension like color. This “dimension
weighting” has been extensively studied by Herman Muller
and his group (reviewed in Liesefeld, Liesefeld, Pollmann, &
Müller, 2019; Liesefeld & Müller, 2019). Their “dimension-
weighting account” (DWA) is built on experiments where, for
example, the observer might be reporting on some attributes
of a green item in a field of blue horizontal items. If there is a
salient red “singleton” distractor, it will slow responses more
than an equally salient vertical distractor. DWA argues that a
search for green puts weight on the color dimension. This
results in more distraction from another color than from an-
other dimension like orientation.

At a level above dimensions, observers can attend to one
sense (e.g., audition) over another (e.g., vision). As any parent
can attest, their visual attention to the stimuli beyond the wind-
shield can be disrupted if their attention is captured by the
auditory signals from the back seat of the car.

Building the priority map – Temporal factors and the
role of “attention capture”

In Guided Search, attention is guided to its next destination by
a winner-take-all operation (Koch & Ullman, 1985) on an
attentional priority map (Serences & Yantis, 2006). In GS2,
the priority map was modeled as a weighted average of con-
tributions from top-down and bottom-up processing of multi-
ple basic features. In GS6, there are further contributions to
priority, as outlined in the next sections. In thinking about the
multiple sources of guidance, it is worth underlining the point

Fig. 6 Look at the star and report the color of ovals
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made earlier, that the priority map is continuously changing
and continuously present during a search task. Different con-
tributions to priority have different temporal properties.
Bottom-up salience, for instance, may be a very powerful
but short-lived form of guidance (Donk & van Zoest, 2008).
Theeuwes and his colleagues (Theeuwes, 1992; Van der
Stigchel, et al., 2009), as well as many others (e.g., Harris,
Becker, & Remington, 2015; Lagroix, Yanko, & Spalek,
2018; Lamy & Egeth, 2003), have shown that a salient sin-
gleton will attract attention. Indeed, there is an industry study-
ing stimuli that “capture” attention (Folk & Gibson, 2001;
Theeuwes, Olivers, & Belopolsky, 2010; Yantis & Jonides,
1990). Donk and her colleagues have argued that this form of
guidance is relatively transient in experiments using artificial
stimuli (Donk & van Zoest, 2008) and natural scenes
(Anderson, Ort, Kruijne, Meeter, & Donk, 2015). Others have
shown that the effects may not completely vanish in the time
that it takes to make a saccade (De Vries, Van der Stigchel,
Hooge, & Verstraten, 2017), but this transient nature of
bottom-up salience may help to explain why attention does
not get stuck on high salience, non-target spots in images
(Einhauser, Spain, & Perona, 2008). Lamy et al. (2020) make
the useful point that “attention capture”may be a misnomer. It
might be better to think that stimuli for attention capture create
bumps in the priority map. In many capture designs, that
bump will be the winner in the winner-take-all competition
for the next deployment of attention. However, other capture
paradigms may be better imagined as changing the landscape
of priority, rather than actually grabbing or even splitting the
“spotlight” of attention (Gabbay, Zivony, & Lamy, 2019).

The landscape of priority can be modulated in a negative/
inhibitory manner as well. Suppose that one is searching for
blue squares among green squares and blue circles. This con-
junction search can be speeded if one set of distractors (e.g.,
all the green squares) is shown first. This is known as “visual
marking” and is thought to reflect some reduction in the acti-
vation of the previewed items (Watson & Humphreys, 1997).
One could conceive of marking as a boost to the priority of the
later stimuli, rather than inhibition (Donk & Theeuwes, 2003;
but see Kunar, Humphreys, and Smith, 2003). For present
purposes, the important point is that marking shows that pri-
ority can evolve over time. Subsequent work has shown the
limits on that evolution. If there is enough of a break in the
action, the map may get reset (Kunar, Humphreys, Smith, &
Hulleman, 2003; Kunar, Shapiro, & Humphreys, 2006). If we
think about priority maps in the real world or in movies, it
would be interesting to see if the maps are reset by event
boundaries (Zacks & Swallow, 2007).

Expanding the idea of guidance – history effects

As the phenomenon of marking suggests, the priority map is
influenced by several forms of guidance other than the

traditional top-down and bottom-up varieties. To quote
Failing and Theeuwes (2018); “Several selection biases can
neither be explained by current selection goals nor by the
physical salience of potential targets. Awh et al. (2012) sug-
gested that a third category, labeled as “selection history”,
competes for selection. This category describes lingering se-
lection biases formed by the history of attentional deploy-
ments that are unrelated to top-down goals or the physical
salience of items.” (Failing & Theeuwes, 2018, p.514). There
are a variety of effects of history. We are dividing these into
two forms of guidance. We will use the term “history” effects
to refer to the effects that arise from passive exposure to some
sequence of stimuli (e.g., priming effects). In contrast, “value”
or “reward” effects are those where the observer is learning to
associate positive or negative value to a feature or location.
This distinction is neither entirely clear nor vitally important.
These phenomena represent ways to change the landscape of
the priority map that are not based on salience or the ob-
server’s goals. One classic form of the priming variety of
history effects is the “priming of pop-out” phenomenon of
Maljkovic and Nakayama (1994). In an extremely simple
search for red among green and vice versa, they showed that
RTs were speeded when a red target on trial N followed red on
trial N-1 (or green followed green). Theeuwes has argued that
all feature-based attention can be described as priming of one
form or another (Theeuwes, 2013; Theeuwes, 2018). This
seems a bit extreme. After all, you can guide your attention
to all the blue regions in your current field of view without
having been primed by a previous blue search. Top-down
guidance to blue would seem to be enough (see Leonard &
Egeth, 2008). Nevertheless, the previous stimulus clearly ex-
erts a force on the next trial. In the “hybrid foraging” para-
digm, where observers (Os) search for multiple instances of
more than one type of target, they are often more likely to
collect two of the same target type in a row (run) than they
are to switch to another target type (Kristjánsson, Thornton,
Chetverikov, & Kristjansson, 2018; Wolfe, Aizenman,
Boettcher, & Cain, 2016). These runs are, no doubt, partially
due to priming effects. Introspectively, when the first instance
of a target type is found in a search display containingmultiple
instances, those other instances seem to “light up” in a way
that suggests that finding the first one primed all the other
instances, giving them more attentional priority.

Contextual cueing

Contextual cueing (Chun & Jiang, 1998) represents a different
form of a history effect. In contextual cueing, Os come to
respond faster to repeated displays than to novel displays, as
if the Os had come to anticipate where the target would appear
even though they had no explicit idea that the displays had
been repeating (Chun, 2000). It has been argued that contex-
tual cueing might just be a form of response priming (Kunar,
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Flusberg, Horowitz, &Wolfe, 2007). That is, Os might just be
faster to respond when they find a target in a contextually cued
location. However, the predominant view has been that con-
textual cueing represents a form of implicit scene guidance
(see below) in which recognition of the scene (even implicitly)
boosts the priority map in the likely target location (Sisk,
Remington, & Jiang, 2019; Harris & Remington, 2020).

Value

A different route to modulation of priority comes from para-
digms that associate value with target and/or distractor fea-
tures. If you reward one feature (e.g., red) and/or punish an-
other (e.g., green), items with rewarded features will attract
more attention and items with punished features will attract
less attention (Anderson, Laurent, & Yantis, 2011). As with
contextual cueing, it could be argued that the effect of reward
is to speed responses once the target is found, and not to guide
attention to the target. However, Lee and Shomstein (2013)
varied set sizes and found that value could make slopes
shallower. This is an indication that value had its effects on
the search process and not just on the response once a target is
found. Moreover, the effects of reward can be measured using
real scenes (Hickey, Kaiser, & Peelen, 2015), an indication
that value can be a factor in everyday search.

We are labeling “history” and “value” as two types of
guidance. One could further divide these and treat each para-
digm (e.g., contextual cueing) as a separate type of guidance
or, like Awh et al. (2012), one could group all these phenom-
ena into “selection history.”Alternatively, priming, contextual
cueing, value, marking, etc. could all be seen as variants top-
down guidance. Bottom-up guidance is driven by the stimu-
lus. Top-down guidance would be guidance with its roots in
the observer. This was the argument of Wolfe, Butcher, Lee,
and Hyle (2003) and of prior versions of GS. GS6 accepts the
logic of Awh, Belopolsky, and Theeuwes (2012). Top-down
guidance represents what the observer wants to find. History
and value guidance show how the state of the observer influ-
ences search, independent of the observer’s intentions. Again,
the important point is that there are multiple modulators of the
landscape of attentional priority beyond top-down and
bottom-up guidance.

Scene guidance

Selection history makes a real contribution to attentional guid-
ance. However, these effects seem quite modest if compared
to “scene guidance,” the other addition to the family of
attention-guiding factors in GS6. Guidance by scene proper-
ties was not a part of earlier forms of Guided Search, largely
because scenes were not a part of the body of data being
explained by the model. Given a literature that dealt with
searching random arrays of isolated elements on a computer

screen, there was not much to say about the structure of the
scene (though we tried in Wolfe, 1994b). Of course, the real
world in which we search is highly structured and that struc-
ture exerts a massive influence on search. In Fig. 7a, ask which
box or boxes are likely to hide a sheep. Unlike a search for a T
amongst a random collection of Ls, where every item is a
candidate target, there are sources of information in this scene
that rapidly label large swathes of the image as “not sheep.”

Top-down guidance to sheep features is important here, but
even with no sign of a sheep, scene constraints make it clear
that “C” is a plausible location. Spatial layout cues indicate
that any sheep behind “B” would be very small and “A,” “D,”
and “E” are implausible, even though, looking at Fig. 7b, there
are sheep-like basic features in the fluffy white clouds behind
“E” and the bits in the building behind “D” that share color
and rough shape with the sheep who was, in fact, behind “C.”

Like selection history, scene guidance is a term covering a
number of different modulators of priority. Moreover, perhaps
more dramatically than the other forms of guidance, scene
guidance evolves over time. In Fig. 3, this is indicated by
having two sources of scene information feeding into guid-
ance. In the first moments after a scene becomes visible, the
gist of the scene becomes available. Greene and Oliva (2009)
demonstrated that exposures of 100 ms or less are all that are
needed to permit Os to grasp the rough layout of the scene.
Where is the ground plane? What is the rough scale of the
space? A little more time gives the observer rough semantic
information about the scene: Outdoors, rural, etc. For this
specific example, very brief exposures are adequate to deter-
mine that there is likely to be an animal present (Li,
VanRullen, Koch, & Perona, 2002; Thorpe, Fize, & Marlot,
1996), even if not to localize that animal (Evans & Treisman,
2005). Castelhano and her colleagues have formalized this
early guidance by the layout in her Surface Guidance
Framework (Pereira & Castelhano, 2019).

With time, other forms of scene guidance emerge. For ex-
ample, Boettcher et al. (2018) have shown that “anchor ob-
jects” can guide attention to the location of other objects.
Thus, if you are looking for a toothbrush, you can be guided
to likely locations if you first locate the bathroom sink.
Presumably, this form of scene guidance requires more pro-
cessing of the scene than does the appreciation of the gist-like
“spatial envelope” of the scene (Oliva, 2005). Since anchor
objects are typically larger than the target object (sink ->
toothbrush), this can be seen as related to the global-local
processing distinction originally popularized by Navon
(1977).

As one way to quantify scene guidance, Henderson and
Hayes (2017) introduced the idea of a “meaning map.” A
meaning map is a representation akin to the salience map that
reflects bottom-up guidance of attention. To create a meaning
map, Henderson and Hayes divided scenes up intomany small
regions. These were posted online, in isolation and in random
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order as a “Mechanical Turk” task in which observers were
asked to rate the meaningfulness of each patch (i.e., a patch
containing an eye might be rated as highlymeaningful; a piece
of wall, much less so). These results are summed together to
form a heatmap showing where, in the scene, there was more
or less meaning present. Meaning maps can predict eye move-
ments better than salience maps calculated for the same im-
ages (Pedziwiatr, Wallis, Kümmerer, & Teufel, 2019). The
method loses the valuable guiding signal from scene structure,
but it is a useful step on the way to putting scene guidance on a
similar footing with top-down and bottom-up guidance.

Rather like those classical sources of guidance, scene guid-
ance may have a set of features, though these may not be as
easy to define as color, size, etc. For example, in scene guid-
ance, it is useful to distinguish between “syntactic” guidance –
related to the physics of objects in the scene (e.g., toasters
don’t float) and “semantic” guidance – related to the meaning
of objects in the scene (e.g., toasters don’t belong in the bath-
room; Biederman, 1977; Henderson & Ferreira, 2004; Vo &
Wolfe, 2013).

Guidance summary

Guidance remains at the heart of Guided Search. Guidance
exists to help the observer to deploy selective attention in an
informed manner. The goal is to answer the question, “Where
should I attend next?” The answer to that question will be
based on a dynamically changing priority map, constructed
as a weighted average of the various sources of guidance
(see Yamauchi & Kawahara, 2020, for a recent example of
the combination ofmultiple sources of guidance). The weights

are under some explicit control. Top-down guidance to spe-
cific features is the classic form of explicit control (I am
looking for something shiny and round). There must be an
equivalent top-down aspect of scene guidance (I will look
for that shiny round ball on the floor). There are substantial
bottom-up, automatic, and/or implicit sources of guidance,
particularly early in a search. Factors like salience and priming
will lead to attentional capture early in a search. More extend-
ed searches must become more strategic to avoid persevera-
tion (I know I looked for that shiny ball on the floor. Now I
will look elsewhere). One way of understanding these changes
over time is to realize that the priority map is continuously
changing over time, and to be clear Treisman’s classic
“preattentive” and “attentive” stages of processing are both
active throughout a search.

Dividing guidance into five forms is somewhat arbitrary.
There are different ways to lump or split guiding forces. One
way to think about the forms of guidance that are added in
GS6 (history, value, and scene) is that all of them can be
thought of as long-term memory effects on search. They are
learned over time: History effects on a trial-by-trial basis, val-
ue over multiple trials, and scene effects over a lifetime of
experience. This role for long-term memory is somewhat dif-
ferent than the proposed role of activated long-term memory
as the home of target templates in search, as is discussed later.

What are the basic features that guide visual search?

A large body of work describes the evidence that different
stimulus features can guide search (e.g., color, motion, etc.).
Other work documents that there are plausible features that do

Fig. 7 (a) Which boxes could hide a sheep? (b) Find sheep. The scene is on the grounds of Chatsworth House, a stately home in Derbyshire, England
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not guide search: for example, intersection type (Wolfe &
DiMase, 2003) or surface material (Wolfe & Myers, 2010).
A paper like this one would be an obvious place to discuss the
evidence for each candidate feature, but this has been done
several times recently (Wolfe, 2014, 2018; Wolfe &
Horowitz, 2004; Wolfe & Horowitz, 2017), so the exercise
will not be repeated here.

There are changes in the way we think about basic features
in GS6. GS2 envisioned guiding features as coarse, categori-
cal abstractions from the “channels” that define sensitivity to
different colors, orientations, etc. (Wolfe et al., 1992). The
simulation of GS2, for example, made use of some very sche-
matic, broad color and orientation filters (see Fig. 3 of Wolfe,
1994a). This works well enough for relatively simple features
like color or orientation (though some readers took those
invented filters a bit too literally). It does not work well for
more complex features like shape. It is clear that some aspects
of shape guide attention and there have been various efforts to
establish the nature of a preattentive shape space. Huang
(2020) has proposed a shape space with three main axes:
segmentability, compactness, and spikiness that seems prom-
ising. However, the problem becomes quite daunting if we
think about searching for objects. Search for a distinctive
real-world object in a varied set of other objects seems to be
essentially unguided (Vickery, King, & Jiang, 2005). By this,
wemean that the RT x set size functions for such a search look
like those from other unguided tasks like the search for a T
among Ls or a 2 among 5s (Fig. 1). On the other hand, a search
for a category like “animal” can be guided. In a hybrid search
task (Wolfe, 2012) in which observers had to search for any of
several (up to 16) different animals, Cunningham & Wolfe
(2014) found that Os did not attend to objects like flags or
coins – presumably because no animals are that circular or
rectangular. They did attend to distractors like clothing; pre-
sumably, because at a preattentive level, crumpled laundry has
features that might appear to be sufficiently animal-like to be
worth examining. But what are those features?

We would be hard-pressed to describe the category, “ani-
mal,” in terms of the presence or absence of classic
preattentive features (e.g.,What size is an animal, in general?).
One way to think about this might be to imagine that the
process of object recognition involves something like a deep
neural network (DNN; Kriegeskorte & Douglas, 2018). If one
is looking for a cow, finding that cow would involve finding
an object in the scene that activates the cow node at the top of
some many-layered object recognition network. Could some
earlier layer in that network contain a representation of cow-
like shape properties that could be used to guide attention in
the crude manner that shape guidance appears to proceed?
That is, there might be a representation in the network that
could be used to steer attention away from books and tires, but
would not exclude horses or, perhaps, bushes or piles of old
clothes. This is speculative, but it is appealing to think that

shape guidancemight be a rough abstraction from the relative-
ly early stages of the processes that perform object recogni-
tion, just as color guidance appears to be a relatively crude
abstraction from the processes that allow you to assess the
precise hue, saturation, and value of an attended color patch
(Nagy & Cone, 1993; Wright, 2012).

The search process

In GS6, the search process is simultaneously serial and
parallel

How does search for that cow proceed? The guidance mech-
anisms, described above, create a priority map based on a
weighted average of all the various forms of guidance.
Attention is directed to the current peak on that map. If it is
the target and there is only one target, the search is done. If
not, attention moves to the next peak until the target(s) is/are
found and/or the search is terminated. Figure 8 shows how
GS6 envisions this process.

Referring to the numbers in Fig. 8, (1) there is a search
stimulus in the world; here a search for a T among Ls. (2)
Items are selected from the visual system’s representation of
that stimulus, in series. (3) Not shown, the choice of one item
over another would be governed by the priority map, the
product of the guidance processes, discussed earlier. (4) The
selected itemmay be represented inWorking Memory (Drew,
Boettcher, & Wolfe, 2015). This will be discussed further,
when the topic of the “search template” is considered. (5)
The object of search is represented as a “Target Template”
in Activated Long Term Memory (ALTM). Again, more will
be said about templates, later. (6) Each selected item is com-
pared to the target template by means of a diffusion process
(Ratcliff, 1978; Ratcliff, Smith, Brown, & McKoon, 2016). It
is not critical if this is strictly an asynchronous “diffusion”
process, a “linear ballistic accumulator” (Brown &
Heathcote, 2008), a “leaky accumulator” (Bogacz, Usher,
Zhang, & McClelland, 2007), or another similar mechanism.
There may be a correct choice to be made here but, for present
purposes, all such processes have similar, useful properties,
discussed below and there is good evidence that the nervous
system is using such processes in search (Schall, 2019).
Evidence accumulates toward a target boundary or a non-
target boundary. (7) Distractors that reach the non-target
boundary are “discarded.” The interesting question about
those discarded distractors is whether they are irrevocably
discarded or whether they can be selected again, later in the
search. For example, in a foraging search like berry picking,
one can imagine a berry, rejected at first glance, being accept-
ed later on. In a search for a single target, successful target-
present search ends when evidence from a target item reaches
the target boundary (6).
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Several questions about this process need to be addressed.

1) What is the purpose of an “asynchronous diffuser”?
2) What is the fate of rejected distractors and how do we

avoid perseverating on a salient distractor object?
3) How is search terminated?

The Asynchronous Diffuser or The Carwash

The slope of RT x set size functions, like those in Fig. 1, can
be thought of as a measure of the rate with which the search
process, shown in Fig. 8, deals with items in the visual display.
A task like the T versus L search, shown here, might produce
target-present slopes of about 20–40 ms per item. For pur-
poses of illustration, suppose that this T versus L search pro-
duces a target-present slope of 30 ms/item and further sup-
pose, as Treisman would have proposed, that this is an un-
guided, serial, self-terminating search. If so, then observers
would have to search through about half of the items, on
average, before stumbling on the target. Taking this factor of
2 into account, if the target-present slope is 30 ms/item, the
“true” rate would be about 60 ms/item or about 17 items per
second moving through the system. Unfortunately, no one has
developed an “attention tracker” that can monitor covert de-
ployments of attention the way that an eye tracker can track
overt deployments of the eyes so we cannot say for sure that
attention is being discretely deployed in at the rate suggested
by the slopes of RT x set size functions. There are useful hints
that neural rhythms in the right frequency range are important
to the neural basis of covert attention. For instance, Buschman

and Miller (2009) could see monkeys shifting attention every
40 ms accompanied by local field potentials oscillating at 25
Hz. Lee, Whittington, and Kopell (2013) built a neural in-
spired model to show how oscillations in this beta rhythm
range (18–25 Hz) could reproduce a variety of top-down at-
tentional effects (see Miller & Buschman, 2013, for a review
of this literature).

So, GS assumes that items are being selected one after the
other and the data suggest that this is occurring at a rate of
around 20 Hz. The problem is that no one seems to think that
object recognition can take place in ~50 ms. Much more typ-
ical is the conclusion from an ERP study by Johnson and
Olshausen (2003) that holds that recognition takes “between
150 and 300 ms.” Even papers proposing “ultra-rapid” recog-
nition (VanRullen & Thorpe, 2001) are suggesting that imper-
fect but above chance performance takes 125–150 ms per
object (Hung, Kreiman, Poggio, & DiCarlo, 2005;
VanRullen & Thorpe, 2001). Thus, a model that proposes that
items are selected and fully recognized every 50 ms is simply
not plausible.

One solution has been to propose parallel processing of the
display (Palmer &McLean, 1995; Palmer, Verghese, & Pavel,
2000) or, more recently, parallel processing of items in some
region around fixation (see discussion of the functional visual
field, below: Hulleman & Olivers, 2017). The GS6 solution,
as illustrated in Fig. 8, is to propose that items may be selected
to enter the processing pipeline every 50–60 ms or so, but that
it may take several hundred milliseconds to move through the
process to the point of recognition. As a consequence, at any
given moment in search, multiple items will be in the
diffusion/recognition process. Since they entered that process

Fig. 8 The search process in GS6.
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one after the other, the result is an asynchronous diffusion. A
real-world analogy is a carwash (Moore & Wolfe, 2001;
Wolfe, 2003). Cars enter and leave the carwash in a serial
manner but multiple cars are being washed at the same time.
Hence the process is neither strictly serial nor parallel. In com-
puter science, this would be a pipeline architecture
(Ramamoorthy & Li, 1977).

It is notoriously difficult to use behavioral data to distin-
guish serial processes from parallel processes (Townsend,
1971; Townsend, 2016). GS6 would argue that it is an essen-
tially fruitless endeavor in visual search. The carwash/
asynchronous diffuser is both serial and parallel. Moreover,
it is easy to imagine variations on the carwash architecture of
Fig. 8. Maybe two “cars” can enter at once. Maybe one car can
pass another car, entering second but leaving first (this is
actually illustrated in the diffusion box in Fig. 8 when the
second and third red lines cross). It will be next to impossible
to discriminate between variants like this in behavioral data
and, in fact, it does not matter very much. The important
points are: (1) selective attention appears to select one or a
very few objects at one time, (2) the time between selections is
shorter than the time to recognize an object; and, therefore, (3)
multiple items must be undergoing recognition at the same
time.

The fate of rejected distractors and the role of
inhibition of return

Returning to Fig. 8, we show rejected Ls being tossed into an
extremely metaphorical garbage can.What does that mean? In
particular, does that mean that once rejected, a distractor is
completely removed from the search? Should visual search
be characterized as an example of “sampling without replace-
ment”? Feature Integration and early versions of GS assumed
this was the case. In GS2, search proceeded from the highest
spot in the prioritymap to the next and the next, until the target
was found or the search ended. The proposed mechanism for
this was “inhibition of return” (IOR; Klein, 1988; Posner,
1980; Posner & Cohen, 1984). In non-search tasks, if attention
is directed to a location and then removed, it is harder to get
attention back to the previously attended location (Klein,
2000). This is IOR. Klein (1988) applied IOR to visual search.
The idea was that the rejected distractors would be inhibited,
preventing re-visitation.

In 1998, Horowitz and Wolfe (1998) did a series of exper-
iments in which they made IOR impossible; for example, by
replotting all of the items on the screen every 100 ms during
search. They found that this did not change the efficiency with
which targets were found (i.e., the target-present slopes did
not change). They declared that “visual search has no memo-
ry” (Horowitz & Wolfe, 1998), by which they meant that the
search mechanism does not keep track of rejected distractors.
Of course, there is usually good memory for targets (Gibson,

Li, Skow, Brown, & Cooke, 2000). The “no memory” claim –
the claim that visual search is an example of sampling with
replacement – was controversial (Horowitz & Wolfe, 2005;
Kristjansson, 2000; Ogawa, Takeda, & Yagi, 2002; Peterson,
Kramer, Wang, Irwin, & McCarley, 2001; Shi, Allenmark,
Zhu, Elliott, & Müller, 2019; Shore & Klein, 2000; von
Muhlenen, Muller, &Muller, 2003) and, probably, too strong.
There is probably some modest memory for rejected
distractors but not enough to support sampling without re-
placement. GS6 assumes that something like four to six pre-
vious distractors are remembered, in the sense that they are not
available to be immediately reselected.

Several mechanisms probably serve to prevent visual
search from getting stuck and perseverating on a couple of
highly salient distractors.

1) There is probably some IOR, serving as a “foraging facil-
itator” (Klein & MacInnes, 1999), or maybe not (Hooge,
Over, van Wezel, & Frens, 2005).

2) As noted earlier, bottom-up salience may fade after stim-
ulus onset (Donk & van Zoest, 2008), and noise in the
priority map may serve to randomly change the location
of the peak in that map.

3) Observers may have implicit or explicit prospective strat-
egies for search that discourage revisiting items (Gilchrist
& Harvey, 2006). For example, given a dense array of
items, observers will tend to adopt some strategy like
“reading” from top left to bottom right. If this is done
rigorously, the result is search that is, effectively, without
replacement even though no distractor-specific memory
would be required.

4) Finally, in any more extended search, explicit episodic
memory can guide search. If I know that I looked on the
kitchen counter for the salt, it may be time to check the
dining table.

GS6 abandons the idea of sampling without replacement.
In our work, we never found evidence that observers were
marking rejected distractors in order to avoid revisiting them,
but others have some evidence and the other mechanisms,
listed above, will cause the search process to behave as if it
has some memory. In any case, it is obvious we can search
effectively without becoming stuck on some salient pop-up ad
on the webpage.

Search termination

If we do not mark every rejected distractor, how do we termi-
nate search when there is no target present? The most intuitive
approach is to imagine that some pressure builds up, embody-
ing the thought that one has searched long enough. Broadly,
there have been two modeling approaches. One approach as-
sumes that, at each time point or after each rejection of a
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distractor, there is some probability of terminating the search
with a target-absent response. That probability increases with
each rejected distractor according to some rule (Moran,
Zehetleitner, Liesefeld, Müller, & Usher, 2015; Moran,
Zehetleitner, Mueller, & Usher, 2013; Schwarz & Miller,
2016). Alternatively, one can propose that an internal signal
accumulates toward some quitting threshold and that search is
terminated if that threshold is reached (Chun & Wolfe, 1996;
Wolfe & VanWert, 2010). Some models have aspects of both
processes (Hong, 2005) and there are other approaches, for
example, proposing a role for coarse to fine processing (Cho
& Chong, 2019).

As in earlier versions of GS, GS6 uses diffusion of a signal
toward a quitting threshold, though we have implemented
probabilistic rules in simulation and have found that the results
are comparable. The GS6 version is diagrammed in Fig. 9.

Items are selected in series (1) and enter into the asynchro-
nous diffuser, described previously (2). Distractors are
rejected. The extent to which rejected distractors are remem-
bered and not reselected is a parameter of the model. Our
assumption is that any memory for rejected distractors is quite
limited (Horowitz &Wolfe, 2005). A noisy signal (4) diffuses
toward a quitting threshold (5). If the threshold is reached,
search is terminated, resulting in either a true-negative re-
sponse or a false-negative (miss) error. If no item has reached
the target threshold to produce a true positive (hit) or false
positive (false alarm error), and if the quitting signal has not
reached the quitting threshold, the process continues (7) with
another selection

Critically, the quitting threshold (5) is set adaptively. If the
observer makes a true-negative response, the threshold is
lowered making subsequent search terminations faster. If the
observer misses a target, the threshold is raised. The size of

increases and decreases in the threshold is determined by the
observer’s tolerance for errors. If errors are costly, the thresh-
old increases markedly after an error. This would result in
longer response times and fewer errors. The degree to which
a search is guided is also captured by this adaptive process of
setting the quitting threshold. Imagine that 50% of items in a
letter search can be discarded as having the wrong color to be
a target, if the quitting threshold is set for an unguided search,
no targets will be missed and the quitting threshold will be
driven down to allow for a markedly faster target-absent
response.

A second adaptive process governs the start point of the
diffusion in the asynchronous diffuser (6). In signal detection
terms, the separation between the target and distractor bounds
in the diffuser gives an estimate of the discriminability of
targets and distractors (roughly, but not quite, d’ – see below).
The starting point of the diffusion is related to the criterion. If
the start point is closer to the target bound than to the distractor
bound, this corresponds to a liberal criterion (c > 0). If the
observer finds a target, the starting point/criterion moves up
to a more liberal position. If the observer makes a false posi-
tive error, the starting point/criterion moves down to a more
conservative position. This adjustment is important in ac-
counting for target-prevalence effects, as discussed below.

This is illustrated in the simulation below but, before turn-
ing to the simulation, it is important to note that the process,
described here, applies to laboratory experiments with hun-
dreds of trials of the same search. We need to think somewhat
differently about searches in the real world.

– Most real-world search tasks are one-time or intermittent
tasks. For instance, consider search in the refrigerator for
the leftovers from last night’s dinner. There is going to be

Fig. 9 The GS6 search termination process
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one trial of this search. If someone else has eaten the
leftovers, you will need to stop when you have searched
long enough. We assume that a combination of a history
of prior searches and an assessment of the current state of
the refrigerator allows you to set an initial quitting thresh-
old. In a laboratory version of that task, you could then
adaptively adjust the threshold to optimize your quitting
time. A one-shot setting of the threshold will allow you to
quit in a reasonable, even if, probably, not an optimal
amount of time. That one-shot setting will be based on a
long-term adaptive process of learning how long this sort
of task should take.

– Even laboratory tasks require the equivalent of that as-
sessment of the contents of the refrigerator. The quitting
threshold must be different for a set size of 2 and a set size
of 20. Evidence suggests that Os correct somewhat im-
perfectly for changes in set size with the result that Os
reliably make more errors at larger set sizes (e.g., Wolfe,
1998). Interestingly, performance in basic search tasks in
the lab is about the same whether several set sizes are
intermixed, or if set sizes are run in separate blocks.
This suggests that the quitting threshold (QT) should be
expressed as:

QT ¼ f set sizeð Þ* time cost per itemð Þ

– Moreover, this f(set size) term should be f(effective set
size), where the “effective set size” is some estimate of
the number of items that would be worth selective atten-
tion. In the colored letter search, mentioned above, the
letters of the wrong color would not be part of the effec-
tive set size. In the leftovers search, you would search
through items that could be the leftovers and not attend
to each egg in the egg tray. The idea of the effective set
size captures the impact of guidance on the search
process.

Simulating the search process

A full computational model of GS would require models of
early vision, gist/ensemble processing, scene understanding,
and more in order to create a priority map. Sadly, that is more
than can be done here. In this paper, we report on the results of
a more limited project to simulate the mechanics of search, as
described in Fig. 9. In effect, this is like simulating something
like a T among Ls or 2 among 5s search (Fig. 1e) where the
priority map is not relevant (the GS2 simulation had such a
condition). Even without the priority map, there are many
moving and interlocking parts in the two diffusion mecha-
nisms proposed here. In the absence of an explicit simulation
(or a mathematically forma description), it is hard to know if

those parts interact to produce plausible results. Our simula-
tion suggests that this architecture can reproduce a range of
important findings from the literature and can do so with a
fixed set of parameters. That is, we do not need one set of
parameters to explain target-prevalence effects and another set
to explain the target-absent to target-present ratio of the slopes
of the RT x set size functions, for example. The simulation
does not promise to identify the correct values for all param-
eters. For example, the idea of the asynchronous diffuser is
that multiple items can be selected in series and then processed
at the same time. How many items can be selected? We don’t
know and we don’t have a clear empirical way to get a precise
answer. In the simulation, a range of values work. We show
results for a limit of five items, but it does not matter much if
we repeat the simulation with three or six items. MATLAB
code for this simulation will be posted at https://osf.io/9n4hf/
files/ , and it should be possible to try different parameters.
Guided Search has always had a large number of parameters
that can be adjusted as Miguel Eckstein once elegantly
illustrated (Eckstein, Beutter, Bartroff, & Stone, 1999). This
remains true in GS6. There are two points to be made here.
First, there is no reason to assume that the real human search
engine does not have a large number of parameters. Second,
the goal is to show that the GS6 search engine can produce a
range of findings without the need to specifically adjust pa-
rameters for each simulated experiment.

Simulation specifics

The simulation of the architecture, proposed in Fig. 9, has the
following properties.

– The asynchronous diffuser has a capacity of five items.
– A new item is selected every 50 ms, if there is space

available.
– A currently selected item cannot be reselected but other

items can be reselected so this model has a memory for, at
most, five items.

– The diffuser is updated every 10 ms with a diffusion rate
of 1/20th of the distance to either the target or distractor
bounds (given a neutral criterion starting point, see be-
low). Thus, without noise it would take 200 ms from
selection to target identification.

– The diffusion is a noisy process with a standard deviation
equal to 2.5X of the diffusion rate.

– The quitting signal begins to accumulate after the first
item has been identified. This diffusion is also a noisy
process with a standard deviation equal to 2.5X of the
diffusion rate.

– If an item hits the target bound, the trial ends with a target-
present response. If an item hits the distractor bound, it is
removed from the diffuser and a new item can be selected.
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– If the quitting signal reaches the quitting threshold, the
trial ends with a target-absent response.

– On each trial, the quitting threshold is proportional to the
set size. That is, if the set size is 20, the quitting threshold
is twice what it would be for a set size of 10. Linearity is
probably an oversimplification since the quitting thresh-
old would be proportional to some estimate of numerosity
and not a perfectly accurate count.

– Target-present responses adjust the starting point of
the asynchronous diffuser. If the response is correct
(a hit), the starting point moves up one step. In effect,
the criterion becomes more liberal. If the response is a
false positive (false alarm), the starting point moves
down by a much larger step, set to 16X of the upward
step.

– Target-absent responses adjust the quitting threshold. If
the response is a true negative, the quitting threshold de-
clines by one step, making subsequent quitting faster. If
the response is a false negative (miss error), the quitting
threshold increases by a larger step defined as (downward
step)/(desired error rate). Thus, if the simulation was
aiming for an 8% error rate, the upward step would be
1/0.08 = 12.5X the downward step.

– The upward step is further scaled by the target prevalence.
Prevalence refers to the proportion of trials that have a
target present. Most search experiments are run at a prev-
alence of 0.5 or 1.0 if the task is to localize or identify the
target. Prevalence has strong effects on error rates (Wolfe,
Horowitz, & Kenner, 2005;Wolfe & VanWert, 2010). In
the simulation, the actual upward step size after an error is
(downward step)/(desired error rate * prevalence * 2).

The simulation was run for 10,000 trials at each of five
prevalence levels (.1, .3, .5, .7, .9). Set size was randomly
distributed among set sizes 5, 10, 15, and 20. The intended
error rate was set to 8%. As noted, the parameters are easily
varied. This is not a claim about the exact values of any of
these. It is a claim that one set of values will produce a set of
plausible search behaviors.

Simulation results

Figure 10 shows the standard results for a visual search exper-
iment (for comparison, see, e.g., Wolfe, Palmer, & Horowitz,
2010). Reaction time (RT) rises linearly with set size. Correct
target-present RTs are faster than target-absent. Miss RTs are
somewhat faster than True Negative RTs. Miss error rates
average about 8%, which was the goal in this run of the sim-
ulation. Error rates increase with set size, as is typical in search
experiments. At 50% target prevalence, false alarm errors are
markedly less common than miss errors; again, as is typical in
laboratory studies.

Slope ratios

One might wonder about the ratio of target-absent to target-
present slopes. GS6 can be described as a version of a serial,
self-terminating search and we would have typically expected
such searches to produce a 2:1 slope ratio, not the ~3:1 ratio
found here (Sternberg, 1969). However, the 2:1 ratio assumes
perfect memory – sampling from the display without replace-
ment. With perfect memory, Os must sample an average of
(N+1)/2 items to find the target and N to reject all items (N =
set size). Once memory is imperfect, the impact of increasing
set size is proportionally greater on absent trials. For pure
sampling with replacement (no memory), it takes an average
of N selections to find the target in a set size of N, but it takes
more than 2N selections to visit all distractors. This means that
the slope ratio will be greater than 2:1. If we simulate the
situation where there is memory for the last five items select-
ed, the predicted slope ratio is about 3, as it is in Fig. 10. The
exact amount of memory is not critical. Predicted slope ratios
are ~3 when memory is less than about half of the set size. In
fact, though it has been assumed that 2:1 slope ratios are the
rule in the empirical data, the actual empirical data tends to
produce slope ratios greater than 2:1 (Wolfe, 1998) including
in children (Gil-Gómez de Liaño, Quirós-Godoy, Pérez-
Hernández, & Wolfe, 2020). It should be noted that, while
empirical slopes are often greater than 2.0, they are typically
less than 3.0. It seems possible that factors like systematic
search strategies (e.g., “reading” the display top to bottom)
make earlier quitting possible. This would be worth testing.

Reaction time (RT) distributions

Continuing this discussion of the role of memory for rejected
distractors, if the search process was really a process of simple
sampling without replacement, the distribution of target-
present RTs would be uniform (with some blur due to noise).
For instance, with a set size of 10, you would have a 10%
chance of landing on the target on the first selection, 10% on
the second, and so forth. The RT distribution for target-absent
trials would be narrower than that of target-present since
target-absent would require selection of all items on every
absent trial. Of course, there would be perceptual and motor
components to the RT that would blur this simple picture of
the RT distribution. In practice, however, this is not what
empirical RT distribution looks like. Real RT distributions
in search (and in general) are positively skewed (Palmer,
Horowitz, Torralba, &Wolfe, 2009). Simple diffusion models
produce positively skewed RT distributions (e.g.,
Vanderkerckhove & Tuerlinckx, 2007). This was one of the
motivations for adopting diffusion processes into GS6.
However, the GS6 architecture with its multiple, interacting
diffusion processes needs to be simulated to characterize its
RT distributions. The distributions for the simulated data,
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shown in Fig. 10, are shown in Fig. 11b. The empirical data in
Fig. 11a are drawn from Fig. 4c of Wolfe, Palmer, and
Horowitz (2010). Although with some quantitative differ-
ences, it is clear that the two sets of distributions are qualita-
tively very similar. The minimum RT for present trials is lon-
ger in the real data than in the simulation, suggesting that the
simulation needs a minimum motor constant added.

Prevalence effects

Target prevalence is an important factor in visual search be-
havior having both basic and applied consequences
(Horowitz, 2017;Wolfe, Horowitz, &Kenner, 2005). It is also

a useful constraint on models of search (Schwarz & Miller,
2016). In the empirical data, lower prevalence is associated
with elevatedmiss errors and with speeded target-absent trials.
High target prevalence (less frequently studied: Wolfe & Van
Wert, 2010) is associated with elevated false-positive errors
and longer target-absent trials. This changing profile of errors
can be converted into signal detection measures. Criterion
moves from conservative at low prevalence to liberal at high
prevalence. D’ does not change dramatically with prevalence
(Gur et al., 2003). It has been instructive to plot zROC curves
for error rates generated at different prevalence values (e.g.,
Fig. S1c ofWolfe & VanWert, 2010). A zROC function plots
the z-transformed Hit rates against z-transformed false alarms.
This converts the normally curved, standard ROCs into
straight lines, if those ROC curves are well behaved. The
slope of a zROC is 1.0 when the variance of underlying signal
and noise distributions are equal. Interestingly, zROC slopes
of less than 1.0 (~0.6) have been found in baggage screening
(Sterchi, Hättenschwiler, & Schwaninger, 2019) and radiolo-
gy (Kundel, 2000), as well as in laboratory studies of recog-
nition memory (Mickes, Wixted, & Wais, 2007; Wixted,
2007). A slope of less than 1 would be consistent with a
variance of the noise distribution being less than the variance
of the signal.

Figure 12 shows the simulation’s performance as a func-
tion of prevalence. Figure 12a shows that prevalence has its
effect on RTs for negative responses. These RTs increase with
prevalence. RTs for positive responses (hits and alarms-not
shown) do not change much with prevalence. Figure 12b
shows the change in the signal detection values of d’ and
criterion (c). Criterion changes from conservative (> 0) at
low prevalence to liberal (> 0) at high prevalence. D’ is not
the right measure when the zROC slope is not 1.0 (see Fig.
12d). However, this figure is still useful in showing that stan-
dard d’ does not change dramatically with prevalence. A more
appropriate measure like d(a) would not change at all
(Macmillan & Creelman, 2005). Figure 12c shows the
ROCs derived from the hit and false alarm data at each prev-
alence level. Note that the axes are drawn to magnify the

Fig. 10 Results of a simulation of the aspects of GS6, illustrated in Fig. 9: (a) RT x set size functions (c.f. Fig. 1f); (b) error rates

Fig. 11 Reaction time distributions: (a) Data from Wolfe, Palmer, and
Horowitz (2010). (b) GS6 simulation data. Each distribution represents
one set size. Lighter curves are smaller set sizes (the four set sizes are 5,
10, 15, and 20, prevalence is 0.5). Green shows target-present. Purple
shows target-absent
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curve. It would be confined to the upper left of a standard
ROC graph because we are simulating highly discriminable
targets and distractors. Figure 12d shows the z-transformed
zROC curve. It has a slope of 0.77, somewhat greater than
the 0.6 found in the literature. The slope is 0.65 if data from set
size 5 are removed. The small set size produces some situa-
tions where false alarm rates drop to near zero, making these
calculations unstable. Overall, the simulation successfully
captures the results from Wolfe and Van Wert (2010). Wolfe
and Van Wert (2010) proposed that this pattern of results
requires a model that allows prevalence to influence both cri-
terion and the quitting threshold. Presumably, the GS6 simu-
lation is successful because it has adaptive processes that ad-
just both of those parameters. If either of those adjustments is
disabled, the pattern of results is not preserved.

Error rates

The miss error rate is given to the simulation as a goal. The
quitting threshold adjusts itself over trials to meet that goal. In
a separate run of the simulation, using the parameters that
were used above, we varied the miss error goal from 3% to
15%.

Results of the simulation are given in Fig. 13. Figure 13a
shows that the quitting thresholds, which started at the same
point for all error goals, evolved so that the lowest error goal

(3% – the top, red line) produced the highest quitting thresh-
old. The starting point threshold in the asynchronous diffuser,
controlling the false-alarm rate does not change with the error
goal because the goal is for miss errors, controlled by the
quitting signal diffuser. Figure 13b shows the simulated error
rates as a function of the error goal. It can be seen that the
model produces the desired error rates. It also captures the
tendency to make more errors at larger set sizes. The top
(blue) line shows errors for the largest set size (20). False-
alarm rates are not changed by changing the miss error rate
goal. Other aspects of the simulation performance are not
qualitatively altered by the change in error rate. Absent RTs
decrease as error rate increases (a classic, speed-accuracy
tradeoff).

Simulation – summary

The simulation of the architecture in Fig. 9 is intended to show
that this proposed mechanism, with all of its interacting parts,
is capable of producing a plausible pattern of results. It cap-
tures basic set size effects as well as RT distributions and the
effects of prevalence. We do not claim that this is the only
possible model that could produce these results. It would be
interesting to see if a very different architecture could do so.
Nor do we argue that these are the only parameters that will
allow this model to produce plausible results. Within limits,

Fig. 12 Simulation of prevalence effects. (a) Reaction time as a function
of prevalence, (b) D’ and criterion, ‘c’, as function of prevalence, (c) ROC
derived from variation in prevalence. Blue number values within the

graph show prevalence associated with each data point. (d) zROC
derived from variation in prevalence. See the supplement to Wolfe and
Van Wert (2010) for comparison data
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many of these parameters can be varied without completely
“breaking” the model. That said, there are critical aspects of
the model and it can be “lesioned” by disrupting them. For
example, the quitting threshold is currently adjusted by the set
size on each trial (presumably, an analog of the observer,
looking at the display and deciding how much “stuff” needs
to be searched through on the current trial). If we eliminate
that adjustment and use the same quitting threshold at all set
sizes, then the slope of the RT x set size function for target-
absent trials becomes zero and the miss error rate, averaged
across set sizes, becomes somewhat larger than the error goal.
If the adjustment of either the quitting threshold or the diffuser
starting point is disabled, the pattern of results changes. If the
main components are intact, the model can tolerate some var-
iation in the parameters.

Spatial aspects of search – The functional
visual fields (FVFs)

Thus far, we have not considered the spatial aspects of the
search process. In the simulation, for example, the search
“stimulus” is simply an array of numbers whose distance from

each other in space has no meaning. Eye movements are not
implemented in the simulation. Of course, in the world of real
visual searches, space matters. In classic GS, spatial factors
were largely ignored. In many of the search experiments on
which GS2 was based, stimuli were big enough and deliber-
ately spaced widely enough to minimize acuity and crowding
effects. In real searches in scenes, of course, no such stimulus
control is possible. Any comprehensive model of search needs
to acknowledge that the time to find a target, 1° from fixation
is likely to be markedly shorter than the time to find the same
target 10° from fixation.

Even if GS largely ignored the topic, it has been under-
stood since Sanders (1963, 1970) that there is a Functional
Visual Field (FVF) around the current fixation that defines
the current spatial limits of search. It can be defined as “an
index of the total visual field area from which target char-
acteristics can be acquired when eye and head movements
are precluded” (Scialfa, Kline, & Lyman, 1987, p.14).
Elsewhere this is also referred to as the Useful Field of
View (Mackworth, 1965; Sekuler & Ball, 1986). The terms
are essentially equivalent. We use FVF here. The idea of the
FVF has been gaining in influence in recent years,
paralleling the increasing use of eye tracking in search ex-
periments. In search, the FVF becomes a measure of what
can be processed with attention in a single fixation
(Liesefeld & Mueller, 2020; Motter & Simoni, 2008;
Young & Hulleman, 2013). Hulleman and Olivers (2017)
go so far as to suggest that we should not be concerned with
attention to individual items, but rather to treat processing of
all items within the FVF as the relevant unit in search. In
this, they update classic parallel models of search (Palmer
et al., 2000) to be parallel processing within the FVF with
serial fixations to move the FVF. We don’t agree (Wolfe,
2017), but we do agree that it is important to consider the
role of eye movements and of the resulting FVF.

In fact, in GS6, there are three FVFs to be considered.
These are not separate components of the model in the sense
that the two diffusers of Fig. 9 are separate components.
Rather, they are logically distinct senses of what we mean
when we talk about the FVF. These three FVFs are illustrated
in Fig. 14. The concept of an FVF can be divided up in other,
similar ways (e.g., Frey & Bosse, 2018).

A target cannot be discriminated from a distractor if it is too
small or too crowded by other contours. These acuity and
crowding limitations exist independent of constraints on
search. For example, in Fig. 14a, imagine that observer is
fixated on the “X.” They might be cued to the green or orange
circle. Theymight be able to resolve the “T” in the green circle
but not the T in the orange circle. The orange T would be said
to lie outside the resolution FVF even though it is attended. A
more detailed account of this type of FVF can be found in
Watson (2018). The exploratory FVF in Fig. 14b is defined by
overt movements of the eyes (as distinct from covert

Fig. 13 Simulation of different miss error goals. (a) Quitting thresholds
as a function of time. Each color represents a different Error Goal from
3% (red-top) to 15% (yellow-bottom). Lower functions in 13A are the
diffuser starting point values that produce false alarms. (b) Error rates as a
function of Error Goal. Each function is for a different set size: Top (blue)
line = set size 20, teal = 15, green = 10, brown = 5
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deployments of attention). If the eyes can go to an item, it lies
inside the exploratory FVF. Note that this FVF is better imag-
ined as a 2D probability function, with fixation to near items
more likely than fixation to more distant items. An item can be
inside the exploratory FVF even if it is outside the resolution
FVF. In the example in Fig. 14b, suppose the observer knows
that the target is red, the next saccade might be directed, as
shown, to a region with several red items, even if they cannot
be resolved as Ts or Ls. This exploratory FVF will be task-
dependent. If the color were irrelevant, the probability map of
overt deployments of the eyes would be different in 14B even
though the stimulus (and, thus, the resolution FVF) would be
unchanged.

The third FVF is defined by covert deployments of atten-
tion. If an item can be covertly attended to during the current
fixation, it lies inside the attentional FVF. Again, this will be
probabilistic. An item can be inside the attentional FVF and
yet not attended to on this fixation if covert attention is other-
wise occupied. This is illustrated in Fig. 14c, where we imag-
ine that the six green-circled items are processed during the
fixation though other selections would have been possible
within that attentional FVF. The idea of an attentional FVF
does not require a commitment to a serial sampling of items by
covert attention, though serial sampling is the GS6 proposal.
Models like Hulleman and Olivers’ (2017) have a rather dif-
ferent view of what is happening. They argue that summary
statistics are computed across the FVF and that nothing is
known about individual items inside the FVF. They would
equate the resolution and attentional FVFs, arguing that, if
you can’t resolve something, it does not contribute to summa-
ry statistics that, in their model, allow the observer to deter-
mine if the target is present.

Returning to Fig. 14a, it would be possible to attend to the
orange circle, putting that item inside the attentional FVF
while being unable to successfully identify the T, placing it
outside the resolution FVF. In practice, the attentional FVF is
probably similar to the resolution FVF because there is not
much point in attending to items you can’t recognize.
However, they do not need to be the same FVFs.

Measuring FVFs

The resolution FVF can bemeasured by standard psychophys-
ical measures: Cue a location and determine the probability
that the item at that location can be identified. The attentional
and exploratory FVFs can be estimated from eye tracking data
(Wu & Wolfe, 2019). Figure 14c imagines the next saccade
going to the target, T. If it was identified during the current
fixation, it must be within the attentional FVF. The set of all
such saccades maps out an estimate of the bounds of the at-
tentional FVF. Actually, the analysis is somewhat more com-
plicated for several reasons. First, sometimes the target is rec-
ognized late in the fixation period after a saccade is pro-
grammed elsewhere. The saccade goes away from the target,
but then the next saccade goes to the target. In other cases,
there may be multiple fixations near the target, as the item is
scrutinized. This is especially true in difficult search tasks like
those in breast cancer screening. These refixations can be fil-
tered out of the attentional FVF. Finally, the target can be
fixated. Then the eyes move away to examine other items
before the eyes go back to the target as the observer makes a
response. That return saccade may be driven more by memory
for the target position than by the attentional FVF. Still, with
some assumptions about how to filter the data, it is possible to
use these targeting saccades to estimate the attentional FVF.
The other saccades, the ones that do not go to the target, map
out the exploratory FVF. Saccades on target absent trials,
where there can be no targeting saccades, provide an easier
estimate of the exploratory FVF. The resolution FVF would
be measured by more standard psychophysical methods, cue-
ing the observer to attend to one location while fixating on
another.

In a simple T versus L search, Wu & Wolfe (2019) found
that targeting saccades mapped out an attentional FVF of 5–8°
radius (see also Young & Hulleman, 2013). The exploratory
FVF was somewhat larger than the attentional FVF (Wu &
Wolfe, 2019), as one might expect. It is important to reiterate
that the sizes of the attentional and exploratory FVFs are not
fixed properties of the human search engine, they are ways of

Fig. 14 Three different types of functional visual fields (FVFs) that need to be considered in visual search. (a) Resolution FVF. (b) Exploratory FVF. (c)
Attentional FVF
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talking about the mechanics of search and about the interac-
tion of that search engine with a specific stimulus. As an
obvious example, if the FVFs for the search for a small, low
contrast mass in a mammogram will be different than the
FVFs for the search for a red spot on the same image.

The eye-tracking data also make it clear that the attentional
FVF, like the exploratory FVF is probabilistic. If everything
inside the attentional FVF were fully processed, then a target
inside that FVF would be found. However, Wu & Wolfe,
(2019) found that target Ts within 2° of fixation, well within
that 5–8° FVF, were only fixated within the next three fixa-
tions on about 70% of instances. The finding that easily de-
tectable items can be missed, even within the attentional FVF
has obvious implications for socially important search tasks
like those in medical image perception (Berlin, 2007;
Goddard, Leslie, Jones, Wakeley, & Kabala, 2001; Kundel,
2007). Moreover, it is clearly related to phenomena like
inattentional blindness and change blindness, where Os can
fail to report clearly visible items, even when they have been
fixated (Simons & Rensink, 2005; Mack & Rock, 1998).

The role of the FVF

As noted earlier, the FVF is absolutely central to some accounts
of visual search (Hulleman & Olivers, 2017). If one is focused
on the role of eye movements in search and if one is relatively
agnostic about the role of covert attention during fixation, it
makes sense to emphasize the FVF since search, at that point,
becomes a succession of deployments of the FVF over the
search array (Rothkegel, Schutt, Trukenbrod, Wichmann, &
Engbert, 2019). The pattern of these deployments gives an
answer to the question, “How much of the image was
attended?”. That answer is important to the understanding of
errors in fields like radiology (Ebner et al., 2017; Lago,
Sechopoulos, Bochud, & Eckstein, 2020) or driving (B.
Wolfe, Dobres, Rosenholtz, & Reimer, 2017). In those settings,
it is important to try to distinguish between errors made because
the observer/expert never “looked at” the target (search errors)
or because they looked at the target and failed to successfully
process what they saw (recognition and decision errors – the
taxonomy comes from Kundel and colleagues (Kundel,
Nodine, & Carmody, 1978; Nodine, Mello-Thoms, Kundel,
& Weinstein, 2002)). As a practical intervention to reduce er-
rors, efforts are made to expand the FVF in the hopes of im-
proving performance (Ball, Beard, Roenker, Miller, & Griggs,
1988; Edwards, Fausto, Tetlow, Corona, & Valdés, 2018).

In terms of the GS6 architecture, shown for example in Fig.
9, the impact of the FVF is relatively muted. The input to the
asynchronous diffuser in Fig. 9 can be seen as being driven by
the FVF. The eyes move to some location. Multiple items are
loaded into the diffuser from that vicinity. Then the eyes go
elsewhere and the process is repeated. In modeling GS6, the
pattern of RTs and errors is much the same if items are

sampled with or without spatial constraints. In reality, there
is no doubt that real-world search is constrained by eye move-
ments and the FVF. Acuity and crowding limits, if nothing
else, ensure that will be true. However, the RT distributions,
error rates, etc., in Figs. 10, 11, 12 and 13 are not dependent on
spatial constraints on selection. In a sense, FVFs and the dif-
fusion and quitting mechanism could be seen as having inde-
pendent “main effects” on search.

Eye movements and the FVF may serve to provide the
equivalent of some added memory to visual search. Eye
movements and oculomotor inhibition of return may serve
as “foraging facilitators” (Hooge et al., 2005; Klein &
MacInnes, 1999; but see Smith & Henderson, 2009) and/or
saccadic momentum may keep the eyes moving in the same
direction over multiple saccades (MacInnes, Hunt, Hilchey, &
Klein, 2014; Wilming, Harst, Schmidt, & Konig, 2013).
These processes, combined with the FVF, make it less likely
that search would be sampling in a fully amnesic manner, with
replacement, and more like the earlier notions of search as a
serial, self-terminating process, sampling without replacement
from the search stimulus. Strict, prospective plans like reading
an image/page from left to right and top to bottom effectively
provide more memory. It would be interesting to see if the
probabilistic character of the attentional FVFwould persist if a
prospective, reading-style plan was imposed on the search.
That is, would Os continue to miss some targets near fixation
while scanning the image in a highly systematic manner?
Presumably, the observer would be sure that he had “looked
at” the whole image. Proofreading errors might be seen as an
example.

To summarize, while most searches are certainly character-
ized by the deployment of FVFs around the visual field, it is
not the FVF, itself, that is responsible for the detailed mechan-
ics of search in GS6. Models like that of Hulleman and
Olivers’ (2017) give primacy to the FVF. Models like GS6
give primacy to covert selection of items. Rather like the older
serial/parallel debate, these alternatives may be difficult to
distinguish in the data and may reflect two views of the same
underlying process.

Search templates and hybrid search

In order to search for something, there must be some repre-
sentation of that target, held in the mind. This is often referred
to as the “search template.” The term “template” must not be
taken too literally. The literal sense is of something used to
make exact copies, like a stencil, but we can obviously have a
search template for “animal” or “tool,” or other categories that
are not visually defined in any precise manner. There has been
considerable interest in templates in search over the last de-
cade. Much of this has focused on the idea that the search
template resides in working memory (e.g., Carlisle, Arita,
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Pardo, & Woodman, 2011; Grubert & Eimer, 2018; Gunseli,
Meeter, & Olivers, 2014; Rajsic, Ouslis, Wilson, & Pratt,
2017; van Moorselaar, Theeuwes, & Olivers, 2014). The core
observation comes from experiments where observers are
asked to hold something in working memory (e.g., a color)
while doing a search task. Results show that the search is
biased toward items resembling the contents of working mem-
ory (for a review, see Olivers, Peters, Houtkamp, &
Roelfsema, 2011; though see also Woodman, Vogel, &
Luck, 2001).

GS6 holds that there are two templates hidden in the term
“search template,” and that these need to be distinguished. The
point is illustrated in Fig. 15.

On the left are eight animals. You could easily memorize
them for a subsequent search task in which you needed to look
for any instance of any of these eight. This would be a “hybrid
search” task. Hybrid search is defined as searching for any of
several possible targets at the same time (Schneider &
Shiffrin, 1977; Wolfe, 2012). Hybrid search can be done quite
easily for 100 specific items (Wolfe, 2012). Less precisely
defined categories (e.g., animals, signs, etc.) can be the targets
of hybrid search as well, though in smaller numbers
(Cunningham & Wolfe, 2014).

When you search the display on the right of Fig. 15, for
instances of the eight possible targets, two representations of
the target set are at work. These can be named the “guiding”
and “target” templates. First, your search will be guided to
animals and not to signs because there are basic animal shape
features that allow you to reject the signs preattentively. We
can call that representation of the targets the “guiding tem-
plate.” It is simply the representation of the top-down guid-
ance, available in the current task. If all the animals had been
yellow, yellow would have been added to the guiding

template. It is perfectly reasonable to imagine that the guiding
template resides in working memory and, indeed, most of the
demonstrations of the role of the template in working memory
use simple guiding features like color (e.g., Hollingworth &
Luck, 2009).

A guiding template can be established and/or influenced in
a number of ways, harkening back to the discussion of forms
of guidance, earlier in this paper. Clearly, some sort of tem-
plate is established by the top-down, volitional act of deciding
to look for, let us say, a blue disk. Moreover, that template can
also be shaped by the prior history of search. In studies like
that of Kristjansson and Johannesson (2014) one can see the
effects of priming more dramatically, in conjunction search,
where top-down guidance is important than in a pop-out
search where not much of a template is needed since
bottom-up salience will get you to the target. These priming
effects on the template will occur implicitly, as will tuning of
the template as implicit processes try to figure out how to
guide optimally (e.g., Geng, DiQuattro, & Helm, 2017).

Once attention selects an animal, you need to determine if
this animal is one of the members of your specific memory set.
For that, you need a more precise template, adequate to allow
you to say that indeed, this crab is the specific crab that you
were holding in memory and that this owl is not the bird of
prey who was in the set. These “target templates” cannot re-
side in working memory because working memory has a lim-
ited capacity and no theory of working memory will permit
100+ objects to be stored there. Moreover, we have found that
hybrid search is not crippled when working memory is loaded
with unrelated items (Drew et al., 2015). We propose that
these templates live in “activated long-term memory
(ALTM)” (Cowan, 1988, 1995), the piece of long-term mem-
ory that is relevant to the current task.

Fig. 15 Two templates in visual search: A guiding template and a target template
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This is not a criticism of the work on templates in working
memory. Debates about whether you can guide to one or two
properties at the same time, for instance, remain interesting
(Bahle, Thayer, Mordkoff, & Hollingworth, 2019; Olivers
et al., 2011). We are simply noting that there are two senses
in which the term template is being used in the search litera-
ture, and that these should be distinguished. The evidence
suggests that attention cannot be guided on the basis of
high-level object identity. A specific object will not “pop-
out” of a display of other objects, unless it is possessed of
some unique basic feature like color (Vickery, King, &
Jiang, 2005; Wolfe, Alvarez, Rosenholtz, Kuzmova, &
Sherman, 2011). At the same time, a list of the basic features
of an object will generally be inadequate to confirm that an
item in the visual scene is the specific target, held in memory.
Guidance and identification are separate tasks and require
separate internal representations or templates.

Other search tasks and limitations

In this final section, we mention a few remaining topics and
limitations – briefly, in order not to make this paper longer
than it already is. In particular, it is worth reiterating a point
made in the context of the GS6 simulation, earlier. GS6 re-
mains a model of a specific class of laboratory search tasks.
These are tasks where observers look for a target item among
distractor items for a block of trials, often several hundred
repetitions of the same task. The claim and assumption of
much of the search literature are that what we learn about in
such artificial situations, applies to real life where we almost
never search for the same thing over and over. For the present,
this needs to be a promise for lines of future work. Here, we
sketch a few of those lines and comment on how GS6 might
be extended to handle these topics.

1) Multiple target search: Sometimes there may be an un-
known number of targets in a search. For example, a
breast x-ray could contain two masses, or one or none.
A piece of carry-on baggage might contain a water bottle
and a knife. It is known that finding a first target can make
it less likely that you will find a subsequent target. This
has been known as the “Satisfaction of Search” effect
(Berbaum et al., 1990; Berbaum et al., 2015;
Tuddenham, 1962), and more recently, as “Subsequent
Search Misses” (Biggs, 2017; Cain, Adamo, & Mitroff,
2013). GS6 would accommodate this situation by requir-
ing the use of the quitting threshold to end all trials in
multitarget search since you could never be sure you are
done after finding a target. The quitting threshold might
be reset to zero after a target was found. It would be
interesting to determine if the architecture of Fig. 9 would
produce the satisfaction of search effect.

2) Foraging: When there are many targets in a scene (e.g.,
berry picking) the search termination rule changes, espe-
cially if observers are not required/expected to pick every
target. In these foraging tasks, the marginal value theorem
(MVT; Charnov, 1976) says that observers should leave
the current patch/scene when the current rate of return
drops below the average rate of return for the task.
Broadly speaking, humans follow the MVT in a basic
berry-picking paradigm (Wolfe, 2013), though they start
to deviate systematically with changes in patch quality
(target prevalence; Fougnie, Cormiea, Zhang, Alvarez,
& Wolfe, 2015; Wolfe, 2013). It would be interesting to
see if MVT behavior would emerge from a version of a
GS6 quitting rule. The animal literature is filled with other
forms of foraging (e.g., hunting for prey rather than graz-
ing for berries). These have been little studied in humans.

3) Hybrid foraging: In hybrid foraging tasks, observers col-
lect multiple instances of several types of target (Wolfe
et al., 2016). Hunting for several different types of blocks
in the Lego box would be one natural example. For GS6,
hybrid foraging is interesting because of the task
switching that does (or does not) occur during the course
of a search within a single scene/patch. Consider a simple
hybrid foraging task in which observers collect blue and
green dots among red and yellow distractors
(Kristjansson, Johannesson, & Thornton, 2014;
Kristjánsson, Thornton, & Kristjánsson, 2018). In this
task, observers can continue picking the current target or
switch to the other, creating a different way to study
history/priming effects in search. Moreover, the quitting
decision for a screenful of items becomes a choice be-
tween leaving the patch/screen versus switching to anoth-
er target type, unless, of course, it is possible to search for
(and guide to) more than one target at a time (see, again,
the question of guiding templates).

4) Quitting thresholds in natural scenes: Scenes complicate
the modeling of search because it is nearly impossible to
define the “set size” in a real scene. Though this might be
more tractable if we focused on defining the “effective”
(Neider & Zelinsky, 2008; Yu, Samaras, & Zelinsky,
2014) or “functional” (Wolfe, Alvarez, et al., 2011) set
size – that is, the set of items relevant to the current search.
Assessing the effective set size would involve
preattentive/non-selective ensemble perception (Whitney
& Yamanashi Leib, 2018), and numerosity judgments
(Burr & Ross, 2008). As mentioned earlier, GS6 would
need to be adapted so that a quitting threshold could be set
after a single glance at a novel scene. The observer would
need to be able to say (implicitly): “This scene contains
10 candidate target objects. I will base my quitting thresh-
old on that estimate.” Alternatively, other measures like
clutter (Neider & Zelinsky, 2011) or congestion
(Rosenholtz, Li, & Nakano, 2007) could be used to assess
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how much relevant “stuff” there is in an image without
recourse to a countable effective set size.

5) Extended search in scenes: Most of the data on search
comes from tasks that take no more than a few seconds
to complete. In no small part, this has been a methodo-
logical necessity. If you want to collect several hundred
examples of the same search from one observer, it would
be impractical to use a search task that takes several mi-
nutes per trial. However, real-world tasks (e.g., cancer
screening) do take minutes per case (and often involve
multiple images). It remains an open question whether
the rules that govern a 700-ms search for a T among Ls
also govern a 10-min search for cancer in a set of mam-
mograms, to say nothing of a search of hours for target
like a sailor lost overboard (Koopman, 1956a, 1956b,
1957). It is likely that there are some important differ-
ences. Short searches do not appear to involve much plan-
ning or strategy. It seems to be faster to let covert attention
bounce around in an anarchic manner than to bring it
under strict control (Wolfe, Alvarez, & Horowitz,
2000). Professional searchers like radiologists, in con-
trast, certainly develop strategies that govern the broad
structure of their search. Amateurs, hunting for a target
like the car keys, would also impose more structure on the
search than any structure that is found in a brief search
trial.

6) Extended search with navigation: The great bulk of
search studies involve a single image. In contrast, many,
perhaps most, real-world tasks involve moving through
the stimulus. In the aforementioned search for the car
keys, the searcher is likely to be navigating around the
room and/or from room to room. There is a limited
amount of research in this area (e.g., Brügger, Richter,
& Fabrikant, 2019; Longstaffe, Hood, & Gilchrist,
2014; Smith, Hood, & Gilchrist, 2010). Search and nav-
igation have generally been studied separately. Virtual
reality provides a promising venue for progress
(Hadnett-Hunter, Nicolaou, O’neill, & Proulx, 2019;
Võ, Boettcher, & Draschkow, 2019), since it allows a
degree of experimental control that is difficult to obtain
with real scenes. Search with navigation need not involve
moving the observer. Searching through 3D volumes of
image data as when screening for lung cancer in CT im-
agery involves a stationary searcher, navigating through
the image data by scrolling through a stack of images
(Drew et al., 2013).

Summary

Thirty years after its first appearance, the core ideas of Guided
Search remain in place. Information from the initial,

preattentive processing of visual input can be used to guide
the deployment of selective attention. Selective attention is
required for the binding of features into recognizable objects.
GS6 expands on those basic tenets. It describes a richer array
of factors guiding attention, notably including scene proper-
ties. It makes more specific proposals about the internal me-
chanics of the “search engine” and shows, by simulation, that
the proposed set of interacting diffusion mechanisms can sim-
ulate data that capture important patterns in human search
data. GS6 more explicitly deals with the inhomogeneity of
the visual field by incorporating the idea of the functional
visual field (or fields), and it attempts to clarify the role of
the search template by explaining that there are two distinct
types of template at work.

There are many topics left untouched here. For instance, a
more detailed mapping of this work to neuroscientific studies
is an exercise for another day and, probably, another author.
Even within the human behavioral literature, there are impor-
tant lines of work with which this paper has not dealt (as the
authors of those works will have noticed). Finally, it remains
to be seen if this work and, more broadly, laboratory studies of
visual search are actually addressing the important factors in
real-world visual search.
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