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Abstract
The visual system can rapidly calculate the ensemble statistics of a set of objects; for example, people can easily estimate an 
average size of apples on a tree. To accomplish this, it is not always useful to summarize all the visual information. If there 
are various types of objects, the visual system should select a relevant subset: only apples, not leaves and branches. Here, 
we ask what kind of visual information makes a “good” ensemble that can be selectively attended to provide an accurate 
summary estimate. We tested three candidate representations: basic features, preattentive object files, and full-fledged bound 
objects. In four experiments, we presented a target and several distractors’ sets of differently colored objects. We found that 
conditions where a target ensemble had at least one unique color (basic feature) provided ensemble averaging performance 
comparable to the baseline displays without distractors. When the target subset was defined as a conjunction of two colors 
or color-shape partly shared with distractors (so that they could be differentiated only as preattentive object files), subset 
averaging was also possible but less accurate than in the baseline and feature conditions. Finally, performance was very poor 
when the target subset was defined by an exact feature relationship, such as in the spatial conjunction of two colors (spatially 
bound object). Overall, these results suggest that distinguishable features and, to a lesser degree, preattentive object files can 
serve as the representational basis of ensemble selection, while bound objects cannot.

Keywords  Ensemble summary statistics · Ensemble selection · Subset selection · Preattentive object file · Binding problem

Introduction

Visual input can deliver information about hundreds of dif-
ferent objects at any moment, a number that far exceeds 
the processing capacity of attention and working memory 
(Cowan, 2001; Luck & Vogel, 1997; Pylyshyn & Storm, 
1988). However, while the visual system cannot fully pro-
cess all its input, neither does it ignore that input. Some 
processing occurs everywhere in the visual field. Selective 
processing is much more limited (Wolfe et al., 2011). What 
is the nature of this non-selective processing that allows the 
visual system to process incoming information beyond the 
capacity limits on selective processing? One popular idea 
builds on the redundancy of the visual input, i.e., objects’ 
characteristics usually do not vary randomly but form groups 
of similar items, like leaves on a tree or regions of similar 
features, like a textured carpet. These regularities make it 
possible for the visual system to deal with structured groups 
of similar objects, so-called “ensembles” (Alvarez, 2011; 
Cohen et al., 2016). This may avoid problems that would 
arise if hundreds of separate objects or locations needed to 
be processed individually.

Statement of Significance  People can rapidly summarize 
multiple objects to form ensemble statistics; for example, 
assessing the average size of apples on a tree. To accomplish 
this, the visual system cannot just summarize information about 
all objects – it should select a relevant subset: apples but not 
leaves. We asked what kind of information makes a “good” 
ensemble that can be selectively attended and can provide an 
accurate summary estimate. We showed that people can calculate 
an ensemble summary for a subset defined by a basic feature, a 
feature conjunction (though, less accurately), but not by an exact 
feature relationship like "green to the left of red".
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What does it mean to say that the visual system can treat 
multiple objects as a whole and represent them in terms of 
their ensemble summary statistics (Ariely, 2001; Chong & 
Treisman, 2003, 2005a, b)? For instance, it has been shown 
that people can roughly and rapidly estimate the number of 
objects (Burr & Ross, 2008; Chong & Evans, 2011; Hal-
berda et al., 2006). They can also calculate some summary 
statistics over features of a large set of items (Whitney & 
Yamanashi Leib, 2018). Those statistics include the central 
tendency of a feature across a group of objects, i.e., mean 
(Ariely, 2001; Chong & Treisman, 2003, 2005a) and meas-
ures of variability in an objects’ feature, i.e., variance or 
range (Haberman et al., 2015; Khvostov & Utochkin, 2019; 
Morgan et al., 2008; Solomon et al., 2011; Suárez-Pinilla 
et al., 2018). These ensemble summaries can act as per-
ceptual stimuli in their own right, for example, producing 
adaptation aftereffects (Burr & Ross, 2008; Corbett et al., 
2012; Norman et al., 2015). Ensemble statistics are gen-
erated after very brief exposure to the stimulus (as fast as 
50–200 ms) (Chong & Treisman, 2003; Whiting & Oriet, 
2011). Moreover, ensemble statistics can be computed even 
if observers have limited or no conscious access to individ-
ual objects (Alvarez & Oliva, 2008; Ariely, 2001; Corbett & 
Oriet, 2011; Parkes et al., 2001). These computations are not 
very demanding of attentional resources (Alvarez & Oliva, 
2008; Bauer, 2009; Epstein & Emmanouil, 2017; but see 
Jackson-Nielsen et al., 2017).

Many visual dimensions can be compressed into a statisti-
cal summary; basic features, certainly: size (Ariely, 2001; 
Chong & Treisman, 2003, 2005a, b), orientation (Alvarez 
& Oliva, 2009; Dakin & Watt, 1997), color (Gardelle & 
Summerfield, 2011; Maule & Franklin, 2015), speed of 
motion (Emmanouil & Treisman, 2008; Watamaniuk & 
Duchon, 1992), but also, perhaps, higher-order properties 
like emotional expressions (Haberman & Whitney, 2007), 
as well as others (Florey et al., 2016; Sweeny & Whitney, 
2014). Recent studies show that these calculations generate 
more than just a single number. The visual system is capable 
of representing the whole distribution of objects’ features 
(Chetverikov et al., 2016, 2017a, b; Kim & Chong, 2020). 
The ability to extract the mean and variance of an ensemble 
would be of little use in the real world unless that ensemble 
could be a subset of all the stimuli in the field. For instance, 
imagine that you are watching a soccer game and want to 
know which team is taller to estimate the relative chances 
to score during a corner. In this case, it would be useless 
to estimate a simple average height over all players. You 
would need to split the players into groups and calculate 
this summary separately for each subset. Our interest in this 
paper is in the properties that can be used to create subsets 
for ensemble calculations.

It is known that it is possible to extract summary statis-
tics from a subset of items even when they are intermixed 

with numerous items from other subsets (Chong & Treis-
man, 2005b; Drew et al., 2010; Emmanouil & Treisman, 
2008; Halberda et al., 2006; Im & Chong, 2014; Poltoratski 
& Xu, 2013; Sun et al., 2016, 2018; Utochkin & Vostrikov, 
2017). Thus, it is possible to assess the average size of the 
blue circles in a display that mixes circles of multiple colors 
(Chong & Triesman, 2005b). Chong and Treisman (2005a) 
suggested that subset selection can be based on features like 
those that can guide attention in the visual search for a sin-
gle object (e.g., color, size, orientation; Wolfe & Horowitz, 
2017). We even know that the subset does not need to be 
completely uniform to be selected. Research shows that if 
one group of items forms a peak in a basic feature distribu-
tion, distinct from the remaining items, the visual system 
can rather easily segment these two ensembles from one 
another (e.g., the first group can consist of heterogeneously 
reddish objects, while the second group is greenish). In con-
trast, if the distribution of features over all objects has only 
one smooth peak, subset selection becomes a much harder 
task. For example, it would be hard to estimate the proper-
ties of reddish and orangish objects separate from yellowish 
and greenish objects that were part of the same, continuous 
color distribution (Im et al., 2021; Khvostov et al., 2021; 
Utochkin, 2015; Utochkin et al., 2018; Utochkin & Yurev-
ich, 2016).

However, less is known about how various objects inter-
mixed over space are categorized as being members of one 
or another ensemble. Note that almost all studies investi-
gating ensemble subset selection have used basic features 
(mostly vivid, highly discriminable, uniform colors) to 
define the different subsets. There is no doubt that simple 
and salient basic features can efficiently guide the global 
selection for ensemble processing. But can the visual sys-
tem use anything more complex than a single feature for the 
ensemble selection? The main question of this paper is the 
following: what is the representational basis of ensemble 
subset selection? What kind of distinguishing information 
about various kinds of objects makes a “good” ensemble 
that can be selectively attended and not confused with other 
ensembles?

To our knowledge, such questions have not been settled 
in the ensemble literature, but the question of how deeply 
the visual system processes objects before the involvement 
of focused attention has been well addressed in parallel 
literature on visual attention. This question gained much 
popularity since the visual search paradigm was intro-
duced (Treisman & Gelade, 1980). In search tasks, observ-
ers are typically presented with an array of objects and are 
asked to determine whether this array contains a target (an 
odd-one-out object or an object with predefined features) 
or not (only distractors are present in a display). Based on 
this literature, one can come up with three “candidates” 
for the representational basis of a subset selection stage in 
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ensemble perception. We order these from the “shallow-
est” characteristic to the “deepest” one. This study aimed 
to evaluate these three candidates.

The first candidate is a “basic feature.” As mentioned 
above, there is a lot of evidence that observers can selec-
tively attend to all objects having a common, distinctive 
feature value. For example, observers easily select all 
blue objects and compute their mean size independently 
from the mean size of green objects (Chong & Treisman, 
2005b). Influential theories such as Feature Integration 
Theory (Treisman & Gelade, 1980) and the Boolean map 
theory of attention (Huang & Pashler, 2007) claim that this 
is the only information that is available for global preat-
tentive segmentation of a display (that is, before focused 
attention deploys locally to individual items). The indi-
rect support of the “feature-based” view also comes from 
the field of feature-based attention (Maunsell & Treue, 
2006). For example, it was shown that paying attention to a 
stimulus feature facilitates the processing of other stimuli 
sharing the same feature (Saenz et al., 2002, 2003). The 
“feature-based” view of ensemble selection predicts that 
fast and accurate ensemble selection is possible only if the 
target group of objects has a  feature value distinct from 
all distractors.

The second candidate for being the representational basis 
of ensemble selection is the so-called preattentive object file. 
This term assumes that the visual system can extract more 
elaborate information during the pre-attentive stage than 
simply the locations of all feature values (Wolfe & Bennett, 
1997). It means that before selective attention comes to a 
place and binds all object features to an “object file” (Kahne-
man & Treisman, 1984), the visual system creates preatten-
tive object files: shapeless bundles of basic features, which 
represent a “list” of all basic features the objects contain 
without knowing how exactly these features are combined. 
Guided Search theory (Wolfe, 2021) can be seen as endors-
ing a version of this idea. Guidance to two or more basic 
features could in principle create a group of items with all 
the correct features. A preattentive object file hypothesis 
of ensemble selection would predict: as long as the target 
subset has a distinct preattentive object file (i.e., the list of 
features), the fast ensemble selection is possible.

The third candidate is the full-fledged bound object. 
This possibility would mean that the visual system works 
with bound representations even before focused attention 
arrives. This is a version of a classic “late selection” position 
(Deutsch & Deutsch, 1963; Norman, 1968). In this view, 
the ensemble section could be based on object identity 
(e.g., “rabbit” or “red-blue conjunction”) even if those sets 
were not defined by a unique feature or a unique preatten-
tive object file. The prediction based on the bound-object 
account would be: fast subset selection is possible as long 
as the items in the set have a distinct identity.

Our study

In our study, we tested these predictions about the basis 
of ensemble subset selection by varying the nature of the 
similarity between targets and distractors. In Experiments 
1 and 2, observers performed an orientation averaging task 
where a target set of objects (bicolor triangles of different 
orientations) were spatially intermixed with distracting sets 
of objects and shared with them none, one, or two colors 
(the more colors are shared between targets and distractors 
– the greater their similarity – the deeper level of represen-
tation is needed to select the target subset). We tested the 
feature candidate in conditions where the target set shared 
no colors with distractors (the target set had a unique color). 
The “preattentive object file” as a candidate was tested in a 
condition where the target set shared one color with distrac-
tors (the target set had a unique conjunction of colors). The 
bound-object hypothesis was tested in a condition where 
the target set shared both colors with distractors but had an 
opposite spatial combination (the target set had a unique 
spatial conjunction of colors – e.g., target: red on the left, 
blue on the right; distractors: blue on the left, red on the 
right). We compared the ability to extract the average of the 
target group in each of these conditions to a baseline condi-
tion where only the target subset was presented. Based on 
the results, we can conclude that, as previously shown, fast 
ensemble selection can be readily based on a unique basic 
feature. Weaker, but reliable ensemble selection is possible 
for items defined by a unique combination of two features 
(our preattentive object files). The subset selection based on 
spatial relations between otherwise identical combinations 
of features proved to be impossible. In Experiment 3, we 
confirm our conclusions about the “preattentive object file” 
candidate testing the condition where a target subset was 
defined by a conjunction of two dimensions. In Experiment 4 
using similar conditions, we show that these conclusions can 
be generalized from orientation averaging to size averaging 
in an adjustment task.

Experiment 1

Method

Participants and power analysis

We used G-power software 3.0.10 (Faul et al., 2007) to 
determine a sample size for this experiment such that a 
medium effect size η2 = .06 with α = .05 and power (1-β) 
= .8 could be found, if present, using a one-way repeated-
measures ANOVA with five conditions. This yielded an esti-
mated sample size of 26 participants. Considering possible 
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technical problems and poor performance in some observers, 
we planned to recruit a sample of 30 observers.

Thirty undergraduate students at the HSE University 
(Moscow, Russia) participated in Experiment 1 for extra 
course credits (27 females and three males, mean age = 19 
years, SD = 1.47 years). All participants reported having 
normal or corrected-to-normal vision without color-vision 
deficiency and provided informed consent electronically. The 
results of two participants were excluded from the analysis 
because they committed more than 35% errors. This exclu-
sion criterion, as well as procedures and data analysis (for 
all experiments in this paper) were preregistered at https://​
osf.​io/​2qmca/​regis​trati​ons (see Open Practices Statement). 
All procedures performed in a study were in accordance with 
the Declaration of Helsinki.

Stimuli

Stimuli, illustrated in Fig. 1A, were developed using Psy-
choPy 3 software (Peirce et al., 2019). The experiment 
was run online using Pavlovia (https://​pavlo​via.​org) on 
participants’ personal computers. A 720 px × 720 px 
square at the center of the screen was used as the “work-
ing” field for presenting stimuli; the remaining screen 
space remained grey. This square was divided into 6 × 6 
= 36 cells by an imaginary grid (each cell side was 120 
pixels). Each cell was used as the location for a triangle. 
Within the cell, the position of a triangle was randomly 
jittered within a 15-pixel range in both horizontal and 
vertical directions.

Fig. 1   (A) The display examples of five experimental conditions in 
Experiment 1. (B) The colorblind-friendly version of Fig.  1A (for 
illustrative purposes only). Correspondence between four original 

colors and their substitutions on this picture: red – violet, yellow – 
orange, green - light blue, blue – dark blue. Note that participants in 
the actual experiment were screened for colorblindness

https://osf.io/2qmca/registrations
https://osf.io/2qmca/registrations
https://pavlovia.org
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The stimuli were bicolor or unicolor isosceles triangles 
(width – 50 pixels, height – 94 pixels) of different orienta-
tions. In each trial, we presented four subsets of nine trian-
gles in each (36 objects in total). All subsets had different 
colors/combinations of colors and contained four different 
orientations of triangles (-30˚, -10˚, 10˚, and 30˚) in differ-
ent proportions. Two sets contained five 30˚ triangles, two 
10˚ triangles, one a -10˚ triangle, and one a -30˚ triangle 
(right-tilted average orientation: 14.4˚). The other two sets 
contained the opposite proportion of orientations: one 30˚ 
triangle, one 10˚ triangle, two -10˚ triangles, and five -30˚ 
triangles (left-tilted average orientation: -14.4˚). The subsets 
were spatially intermixed. Within each block, triangles from 
one subset were targets and three other subsets were distrac-
tors (all consistent throughout the block). In different blocks, 
a target subset was defined by a different unique attribute 
(see Fig. 1A).

(1)	 Feature – Unicolor. Here, subsets were defined by a 
uniform color. For example, a target subset consisted 
of red triangles, and distractors subsets consisted of 
green, blue, and yellow triangle; so that the target sub-
set shared no colors with distractors.

(2)	 Feature – Bicolor. This condition was similar to condi-
tion (1) in the sense that target subsets were defined 
by features not shared with any of the distractors. 
However, whereas each triangle in condition (1) was 
colored uniformly, triangles in the present condition 
were bicolor, which was accomplished by dividing each 
triangle into two halves vertically. For example, tar-
get triangles could be dark-red and light-red, whereas 
distractors could be dark-green and light-green, dark-
blue and light-blue, light-yellow, and dark-yellow. 
This condition was introduced to have a version of a 
feature condition but with the same spatial complex-
ity as in the Conjunction and the Spatial conjunction 
conditions (which are described below). In addition, 
the comparison between the Feature-Unicolor and the 
Feature-Bicolor conditions lets us control for the use 
of “bicolorness” as a potential cue for orientation aver-
aging (e.g., because bicolor triangles have a vertical 

boundary between two colored halves that unicolor 
triangles do not have).

(3)	 Conjunction of two colors. Here, a target subset shared 
each of its colors with one of the distractor subsets, 
so that no color was unique to the target subset. For 
example, a target subset consisted of red-green trian-
gles whereas distractor subsets consisted of yellow-
GREEN, RED-blue, and yellow-blue.

(4)	 Spatial conjunction of color. Here, the target defini-
tion includes the relative position of colors within an 
object. For example, a target subset could be red-green 
whereas distractor subsets could be green-red, yellow-
blue, and blue-yellow. Here, targets have the same set 
of two colors as one subset of distractors but in a dif-
ferent spatial arrangement (mirror-reversed). Impor-
tantly, the target subset and its mirror-reverse coun-
terpart always had opposite average tilts. For example, 
if the red-green target subset were on average tilted to 
the right, then the green-red distractor subset was on 
average tilted to the left. This made it impossible to 
judge the average orientation of the target subset based 
on picking any items just having the relevant colors. 
Instead, it required distinguishing between the two spa-
tial arrangements of these colors.

(5)	 Targets alone. This condition was used as a baseline to 
measure the accuracy of orientation averaging when 
observers do not need to filter out distractors so that 
all errors come only from the averaging itself. In this 
condition, only a target subset of triangles and no dis-
tractors were presented. The presented triangles were 
colored the same way as in the Feature-Bicolor condi-
tion.

Procedure, design, and data analysis

The experiment consisted of five blocks, each dedicated to 
a single stimulus condition described in the previous sec-
tion. The color or color combination of a target subset was 
set randomly for each block and remained consistent dur-
ing the entire block. Each trial started with the presentation 
of a fixation point for 500 ms (see Fig. 2) followed by a 

Fig. 2   The time course of a typical trial in Experiment 1
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brief presentation of a sample set of triangles for 300 ms. 
Observers were asked to report whether the target subset 
had a left-tilted or right-tilted average orientation (two-alter-
native forced-choice; 2AFC) by pressing an “L” or an “A” 
button on a keyboard, respectively. After the button press, 
the observers received feedback (300 ms) informing them 
whether the response had been correct or not. The feedback 
screen was followed by an intertrial interval when observ-
ers were shown a vertically oriented triangle from the target 
subset as a reminder. The next trial started upon the press-
ing of the spacebar so that participants could progress at a 
comfortable pace and rest whenever they wanted.

At the beginning of each block, the participants per-
formed a practice session consisting of 26 trials for famil-
iarization with the task and stimuli in the block. The practice 
session was immediately followed by an experimental ses-
sion. Each experimental session consisted of 120 trials (600 
trials in total).

The design of Experiment 1 was within-subject. Each 
participant completed all five conditions/blocks (Targets 
alone, Feature-Unicolor, Feature-Bicolor, Conjunction, Spa-
tial conjunction) in random order. The dependent variable 
was the percent of correct responses within each condition.

Results

As shown in Fig. 3, there was a clear effect of the way 
the target and distractor subsets are defined on the ability 

to estimate the average orientation of the target subset. 
Repeated-measures ANOVA showed a strong main effect 
of the experimental condition on the proportion of cor-
rect responses (F[2.6, 70.11] = 133.98, p < .001, η2 = .73; 
Greenhouse–Geisser correction was applied to the degrees 
of freedom). Pairwise post hoc comparisons showed equal 
performance in the Feature-Unicolor and the Feature-Bicolor 
conditions (t(27) = 0.5, p = .62, Bonferroni-corrected α = 
.005, Cohen’s d = 0.09). All other conditions differed sig-
nificantly from each other: the Targets alone yielded the best 
accuracy (M = 91% correct); the Feature-Unicolor and the 
Feature-Bicolor were slightly less accurate (M = 84% cor-
rect); then the Conjunction condition followed (M = 74% 
correct); and, finally the Spatial conjunction caused the 
worst performance (M = 56% correct); pairwise ts(27) > 
5.68, ps < .001, Bonferroni-corrected α = .005, Cohen’s ds 
> 1.07. Note that observers performed above chance (50% 
correct) in all conditions, even in the Spatial conjunction 
one (ts(27) > 3.34, ps < .003, Bonferroni-corrected α = .01, 
Cohen’s ds > .63).

Discussion

First, we should note that the absence of a difference 
between the Feature-Unicolor and the Feature-Bicolor con-
ditions showed that the “bicolorness” of our stimuli and the 
number of colors in a display (four or eight) do not influence 
the accuracy of determining the mean orientation. Therefore, 

Fig. 3   The proportion of correct responses in different conditions of Experiment 1. Error bars denote the SEM, with between-subject variance 
removed following Cousineau’s (2005) method. The lower point on y-axis represents the “random guess” performance level (0.5)
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we show that even relatively complex, two-part objects can 
be quite successfully selected for ensemble processing if 
they have unique features. The absence of the difference in 
these conditions allows us to rule out some of the low-level 
accounts such as display heterogeneity that might be used to 
explain the observed reduction in performance in the con-
junction and spatial conjunction conditions (e.g., see Lleras 
et al., 2019; Wang et al., 2017).

Secondly, our results showed that observers could select 
the target objects to some degree in almost all conditions 
except for the Spatial conjunction condition, as their perfor-
mance was well above chance in those conditions. The base-
line condition (Targets alone) represents performance under 
ideal circumstances – no possible confusion between targets 
and distractors (also, potential crowding effects would be 
smaller due to the reduced number of objects in the Targets 
alone display). Performance in this condition was very high 
(91% correct) but still not perfect, suggesting that subset 
selection was not the only source of errors in this task. Some 
portion of the errors could come from lapses (e.g., accidental 
mixing up of the response keys) or imperfect estimates of 
the ensemble mean orientation. Since other conditions dif-
fer from the baseline by the need to select a subset and they 
differ from each other only by the number of features shared 
between targets and distractors, we can explain the differ-
ences in performance by the difficulty of selection.

The performance in the two conditions where the target 
subset was defined by a unique feature (Feature-Unicolor 
and Feature-Bicolor) was rather high (~ 84%: only 7% lower 
than in the baseline). Thus, we conclude that, though the 
presence of differently colored distractors interferes a bit 
with the calculation of mean orientation in the target sub-
set, still, observers filtered out most of the distractors and 
selected the target subset successfully. This implies that 
objects defined by unique features, not shared with other 
objects, can be used as a basis for ensemble selection.

In contrast with these “feature-based” conditions, perfor-
mance in the Spatial conjunction condition (56% correct) 
was much worse than the baseline (although slightly bet-
ter than chance), which suggests that it is much harder or 
practically impossible to select a target subset based on the 
spatial conjunction of two colors. A clever observer might 
beat chance by

1)	 Picking one item
2)	 Deciding if it is a target
3)	 If it is a target, guess that orientation is the ensemble 

orientation (correct seven out of nine times)
4)	 If it is not a target, guess the opposite.

While possible, this requires a lot of work in 300 ms. 
Some such strategy might, however, explain the modest, 
above chance behavior. We will address this “subsampling” 

strategy more carefully in Experiment 2. For now, we con-
clude that it is unlikely that ensemble selection was used 
as the basis for performance in the Spatial Conjunction 
condition.

At 74% correct, performance in the Conjunction condi-
tion fell in-between the relatively easy, feature-based condi-
tions and the very hard Spatial conjunction condition. We 
cannot unequivocally decide between an ensemble account 
and a sampling account for performance in this condition. It 
could be that observers used a sampling strategy similar to 
that we proposed for the Spatial conjunction condition, but, 
in the easier Conjunction condition, they were able to better 
sample a proper item more often. Alternatively, observers 
might be selecting a large target subset, but that selection 
might be imperfect. Either some distractors were errone-
ously included in the subset, or a smaller number of target 
items were selected (which would decrease the accuracy of 
the calculation of the mean). We address these two alterna-
tives in Experiment 2. For now, we can conclude that it is 
possible that a preattentive object file can be used to some 
degree to select relevant items for computing subset ensem-
ble statistics.

Experiment 2

A recurring question in the ensemble literature asks if 
ensemble representations are built on global processing of 
all items in the relevant subset or if performance can be 
based on a smaller sample from that set. There are multiple 
claims that the level of accuracy, seen in the data, can be 
achieved if observers efficiently sampled only a small hand-
ful of random items (e.g., Allik et al., 2013; Gorea et al., 
2014; Myczek & Simons, 2008; Solomon, 2010). This 
could allow ensemble summary statistics to be computed 
using mechanisms whose capacity would not exceed those 
of focused attention and/or working memory. Although the 
most extreme versions of this idea (e.g., that the average 
feature is computed exclusively from one to three samples 
with no contribution from other items) have been shown to 
be wrong (Chong et al., 2008; Utochkin & Tiurina, 2014), 
the debate about the capacity of ensemble processing still 
lives on; for example, perhaps the sample size grows with 
the square root of set size (Whitney & Yamanashi Leib, 
2018) or perhaps different weights are placed on attended 
and unattended sets of items (Iakovlev & Utochkin, 2021; 
Kanaya et al., 2018).

Extreme versions of sampling theories should be consid-
ered as offering an alternative explanation for the results in 
Experiment 1. Instead of selecting multiple target objects 
and averaging them, observers could just find a random tar-
get item and respond based on its orientation (performing a 
version of a visual search task where they look for at least 
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one out of many possible targets). This strategy can provide 
a reasonable performance level (at least above chance). In 
Experiment 2, we compare subset selection to sampling by 
analyzing the performance in displays where we showed 
the whole target distribution of orientations and in displays 
where the target subset contained nine copies of a single 
orientation. The single orientation was randomly sampled 
from the whole distribution. If observers just sample one 
target object, average performance should not differ between 
these two conditions. If observers select the whole target 
subset or at least some of its members greater than one, then 
they should benefit from presenting the whole, heterogene-
ous distribution and the performance in the condition with 
the whole distribution should be higher.

Method

Participants and power analysis

We planned to recruit the same number of participants 
(N = 26) as in Experiment 1. We calculated the power 
for this experiment based on the pilot study (N = 7) with 
the same experimental design (the data can be found at 
https://​osf.​io/​2qmca/) as the main Experiment 2. We evalu-
ated the expected mean differences, SD, and other param-
eters for the effect of interest (the interaction between 
factors). Based on these parameters, our power analysis 
(GLIMMPSE program: https://​glimm​pse.​sampl​esize​shop.​
org/) asserts that 26 observers give us the power (1-β) > 
.99 to detect an interaction similar to the results of the 
pilot experiment (with α = .05). Given concerns about 
possible technical problems, poor performance in some 
observers, and some variations between the pilot and the 
main experiment, we increased the planned sample size 
to 31 observers.

Thirty one observers (23 females and eight males, mean 
age = 23.83 years, SD = 7.27 years) were recruited via Pro-
lific (www.​proli​fic.​ac; Palan & Schitter, 2018; Peer et al., 
2017) and run using Pavlovia (https://​pavlo​via.​org). They 
gave informed consent and were paid £5 per hour (the 
experiment lasted approximately 40 min). All participants 
reported normal or corrected-to-normal vision without 
color-vision deficiency. The results of three participants 
were excluded from the analysis because they committed 
more than 35% errors.

Stimuli

Software and stimuli were the same as in Experiment 1 in 
terms of their number, coloring, orientation distributions, 
and layout. The critical changes concerned presenting a tar-
get subset. We presented either the whole target distribu-
tion (the “Whole-distribution” condition), as described in 

Experiment 1, or nine copies of one random value, drawn 
from this distribution of orientations (the “One-value” con-
dition). Thus, displays in the Whole-distribution condition 
were identical to those in Experiment 1. Displays in the 
One-value condition were identical to the Whole-distribu-
tion condition in terms of distractors, but all nine triangles 
of the target distribution had the same orientational value 
sampled from the whole distribution (see Fig. 4). As in 
Experiment 1, the whole orientation distribution included 
four different orientations (-30˚, -10˚, 10˚, and 30˚) in dif-
ferent proportions. The sampling of a random orientation 
from that distribution to make nine copies for the One-value 
condition followed these proportions across trials. For exam-
ple, if the whole distribution was left-tilted, as described in 
Experiment 1, then the fractions of trials of a correspond-
ing One-value condition would be as follows: in 5/9 trials 
the target triangles will be -30˚, and in 2/9 trials, all tri-
angles will be -10˚, in 1/9 trials, all triangles will be 10˚, 
and in 1/9 trials, all triangles will be 30˚ (see Fig. 4B). If 
observers were sampling only one random target triangle and 
gave the response based only on it, we expect no difference 
between the Whole-distribution and the One-value condi-
tions, because the latter condition provides the same amount 
of information (averaged over all trials) as the sampling one 
random target in the former one. But if observers select more 
than one target triangle and average them, the performance 
should be better for the Whole-distribution condition. This 
prediction is based on the fact that the Whole-distribution 
always contains items predominantly tilted to the real aver-
age direction, whereas 2/9 trials of the One-value condition 
are completely misleading because the sampled value has an 
opposite tilt compared to the implied average of the distri-
bution from which this value has been sampled. The use of 
these 2/9 trials is required to model performance as if it were 
based on selecting one random target item – in 2/9 cases, the 
observer would select the wrong item without knowing that 
it is incorrect (see Fig. 4B).

As in Experiment 1, we manipulated the attributes that 
defined target and distractor subsets. We had the same list 
of conditions except that we dropped the Feature-Unicolor 
condition, as it was shown to provide the same performance 
as its bicolor analog. Therefore, we had the following con-
ditions for this experiment: Feature-Bicolor (a target subset 
was defined by a unique color), Conjunction (by a unique 
conjunction of two colors), Spatial conjunction (by a unique 
conjunction of position × color), and Targets alone (baseline 
condition when one a target subset is present).

Procedure, design, and data analysis

The procedure was the same as in Experiment 1. Each par-
ticipant completed four blocks (Feature-Bicolor, Conjunc-
tion, Spatial conjunction, and Targets alone) in random 

https://osf.io/2qmca/
https://glimmpse.samplesizeshop.org/
https://glimmpse.samplesizeshop.org/
http://www.prolific.ac
https://pavlovia.org
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order. The Whole-distribution and the One-value trials of 
each condition were intermixed within each block. At the 
beginning of each block, the participants performed a prac-
tice session consisting of 36 trials for familiarization with 
the task and stimuli in the block. Each experimental session 
consisted of 216 trials (864 trials in total).

In Experiment 2, we used a 2 (Target distribution: Whole-
distribution vs. One-value) × 4 (Target attributes: Feature-
Bicolor, Conjunction, Spatial conjunction, and Targets 
alone) within-subject design. The feedback to the observer 
about the correctness of the response in a trial is based on 
the true average orientation of target triangles present on 
the screen. However, the primary measure for data analy-
sis purposes was based on the percentage of the “implied” 
correct responses. The “implied” correct response is based 
on the average of the distribution from which individual 
orientations were sampled in each trial. The “implied” 
average always matches the screen-based average in the 
Whole-distribution trials, so there would be no mismatch 
between feedback to the observer and the implied correct 
response. However, in 2/9 of the One-value trials, there is a 
mismatch. In those trials, the nine triangles, displayed in the 

target subset, could be tilted left even though they were sam-
pled from a right-tilted distribution. If an observer responds 
“left-tilted,” that would be an incorrect “implied” response 
for data analysis purposes, but the observer would receive 
feedback informing them that this was a correct response 
(which, of course, it was, given what was on the screen). The 
One-value data show what performance would look like if 
observers were sampling only one random item out of nine 
targets. Based on the whole distribution, they should pick 
items with a “wrong” tilt in 2/9 cases.

Results

The main results of Experiment 2 are depicted in Fig. 5. We 
found a strong main effect of the target-defining attribute 
on accuracy relative to the implied average orientation 
(F[2.33,62.86] = 200.61, p < .001, η2

p = .881; Green-
house–Geisser correction was applied to the degrees of 
freedom). All pairwise differences were significant: Tar-
gets alone > Feature-Bicolor > Conjunction > Spatial 
conjunction (all ts(27) > 3.2, ps < .004, Bonferroni-cor-
rected α = .008, Cohen’s ds > 0.606). The main effect of 

Fig. 4   (A) The display examples of the Whole-distribution and the 
One-value displays for the Targets alone, Feature-Bicolor, Conjunc-
tion, and Spatial conjunction conditions in Experiment 2. (B) All pos-

sible types of the One-value displays for the Targets-alone condition. 
The picture depicts the left-tilted distribution case – the right-tilted 
distribution trials were constructed symmetrically
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the distribution of orientations in the target subset was also 
found to be significant (F[1,27] = 66.16, p < .001, η2

p = 
.71). Over all conditions, observers were more accurate 
in the Whole-distribution than in the One-value condition 
(t(27) = 8.13, p < .001, Cohen’s d = 1.54). This is of modest 
interest. Of more importance is the difference between the 
One-value and the Whole-distribution displays for each of 
the subset-defining, target attributes. The difference varies 
with target attribute, as seen in the significant target attribute 
× distribution interaction (F[3,81] = 33.231, p < .001, η2

p = 
.552). Looking at the individual conditions, in the Targets-
alone condition, there was a clear advantage of the Whole-
distribution condition over the One-value (t(27) = 9.69, p 
< .001, Cohen’s d = 1.83). The same is true in the Feature-
Bicolor condition (t(27) = 8.67, p < .001, Cohen’s d = 1.63). 
A significant, if smaller benefit is still found in the Conjunc-
tion condition (t(27) = 2.78, p = .009, Cohen’s d = 0.53). 
On the other hand, there is a small, but significant effect in 
the opposite direction for the Spatial conjunction condition. 
Performance with the One-value subset was better than with 
the Whole-distribution (t(27) = 3.68, p = .001, Bonferroni-
corrected α = .012, Cohen’s d = 0.7). In this experiment, 
observers performed above chance in all combination of 
conditions (ts(27) > 4.3, ps < .001, Bonferroni-corrected α 
= .01, Cohen’s ds > .55), except for the Whole-distribution 
× the Spatial conjunction (t(27) = 0.82, p = .42, Bonferroni-
corrected α = .006, Cohen’s d = 0.15). That is, in the Spatial 
conjunction condition, observers actually did worse with the 

Whole-distribution than they could have done if they had 
selected one item and guessed on the basis of that item.

Discussion

As we would expect, we observed a substantial increase in 
performance within the Whole-distribution compared to the 
One-value condition for the Targets alone (10% difference) 
and the Feature-Bicolor (7%). This difference comes from the 
fact that the percent of the implied correct responses in the 
One-value condition could not raise higher than 78% (even 
for an ideal observer) because only in 7/9 (~78%) trials all 
nine target triangles had the “correct” orientation (e.g., the 
left-tilted orientation was sampled from the left-tilted distri-
bution). In the remaining 2/9 trials, even an ideal observer 
could not give an implied correct response because all nine 
target triangles had a “wrong” tilt compared to the implied 
correct. Overall, it means that observers take advantage of 
availability the whole target distribution (rather than one ran-
dom value) and use this additional information for a more 
accurate calculation of the target average orientation. We can 
conclude that in the Targets alone and the Feature-Bicolor, 
observers use more than one target object to make their deci-
sion about the subset orientation. This result is consistent 
with the calculation of ensemble statistics. Based on the simi-
lar results of the Targets-alone and the Feature-Bicolor condi-
tion, we can also confirm our conclusion from Experiment 1: 
a unique feature can be used as a basis of ensemble selection.

Fig. 5   The percentage of correct responses relative to the “implied” 
average orientation as a function of the target-defining attribute tar-
get distribution (Experiment 2). Note that correct responses in the 
One-value condition were calculated based on the whole target dis-

tribution, not based on what was presented on the screen. Error bars 
denote the SEM, with between-subject variance removed following 
Cousineau’s (2005) method
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The opposite results can be seen for the Spatial conjunc-
tion condition: the Whole-distribution condition produces 
worse performance than the One-value (4% disadvantage). 
We consider this to be strong evidence that observers in the 
Spatial conjunction condition did not base their decisions on 
a subset of even a few relevant items. Their very poor per-
formance looks more like they based their decision on one 
item, and sometimes even that one item was not a member 
of the correct subset. Observers could not reliably distin-
guish between the target subset and the distractors having 
the same colors but with the opposite mean tilt (e.g., if the 
target subset of red-green was left-tilted on average, then 
the distractor subset of green-red would be right-tilted on 
average). For the Whole distribution condition, this means 
that selecting a random object with red and green colors 
gives them only a 50% chance to respond correctly because 
exactly half of the 18 objects with red and green colors were 
tilted to the correct direction (note that observers indeed 
performed at chance in this condition). The One-value dis-
plays within the Spatial conjunction condition produce better 
than chance performance. There are several possible paths 
to this modest performance. For example, there were 11 out 
of 18 objects with red and green colors tilted in the correct 
direction (all nine target objects + two distractors) in 7/9 of 
the trials (when the sampled orientation matched the correct 
distributional response). In this case, the strategy of sam-
pling one random object with red and green colors should 
provide slightly better than chance (and the Whole-distri-
bution) performance because the opposite situation (when 
all target objects tilted to the wrong direction) happened 
only in 2/9 trials. The straight-forward calculation would be 
((7/9)*(11/18)+(2/9)*(7/18)) = 56%, exactly the result for 
the One-value version of our Spatial conjunction condition. 
The important conclusion is that there is no evidence that 
observers could select a subset, based on the spatial conjunc-
tion of colors – performance in both the Whole-distribution 
and One-value conditions can be explained by the strategy 
of selecting of one item with two correct colors.

The Conjunction condition provides results that can sup-
port intermediate conclusions. Clearly, the results are differ-
ent from those for the Spatial conjunction condition. Like 
the Targets-alone and the Feature-Bicolor conditions, there 
is a significant advantage of the Whole-distribution over the 
One-value condition, although it is rather small (3%). These 
results show that observers do not sample just one target 
object for a response. They use some extra information.

In the discussion of Experiment 1, we put forward two 
different explanations of the Conjunction condition results. 
(1) Observers sample one random target object and base 
their responses solely on that orientation. (2) They select a 
larger target subset but not an ideal target subset. It could 

be a noisy subset, including non-target items. Alternatively, 
it could be a subset greater than one, but not much greater 
than one. The current data cannot distinguish between these 
hypotheses. Experiment 3 uses other preattentive object file 
stimuli in an effort to clarify this issue.

Experiment 3

The Conjunction condition of Experiments 1 and 2 might not 
have been ideal for subset selection and calculation of ensem-
ble statistics because we used a color × color conjunction. 
Conjunctions of two values from the same dimension (color 
× color or orientation × orientation) are known to lead to inef-
ficient visual search (Wolfe et al., 1990; but see Wolfe et al., 
1994, for an exception of part-whole color relations) and it is 
reasonable to imagine that such conjunctions would not sup-
port easy subset selection. Perhaps a feature bundle or preatten-
tive object file would support more effective subset formation 
and ensemble calculation if the conjunction was between two 
different feature dimensions. Buetti et al. (2019) has argued 
that, during visual search, many objects can be processed and 
compared along two feature dimensions (e.g., color and shape) 
in parallel in space and time. Thus, in Experiment 3, we tested 
color × shape conjunctions along with the relevant simple fea-
ture control conditions for our ensemble selection task. As in 
Experiment 2, we wanted to show directly that observers were 
indeed selecting a subset of target items to perform the task 
and not basing their response on just one random target item. 
Thus, we used the methods from Experiment 2 and compared 
the performance in a condition where observers were shown 
the whole target distribution of orientations with a condition 
where they were shown nine copies of one randomly sampled 
item from the whole distribution.

Method

Participants and power analysis

The power calculation was identical to Experiment 2. Thirty 
observers (nine females and 21 males; mean age = 28 years, 
SD = 9.1 years) were recruited via Prolific (www.​proli​fic.​ac; 
Palan & Schitter, 2018; Peer et al., 2017) and run using Pav-
lovia (https://​pavlo​via.​org). They gave informed consent and 
were paid £5 per hour (the experiment lasted approximately 
45 minutes). All participants reported normal or corrected-
to-normal vision without color-vision deficiency. The results 
of one participant were excluded from the analysis because 
they committed more than 35% errors (preregistered exclu-
sion criterion).

http://www.prolific.ac
https://pavlovia.org
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Stimuli

Software and stimuli were the same as in Experiment 2 in 
terms of their number, orientation distributions, and layout. 
As in Experiment 2, we used the same manipulation of the 
composition of the target distribution. We presented either 
the whole target distribution (the Whole-distribution condi-
tion) or nine copies of one random orientation value from 
this target distribution (the One-value condition). The criti-
cal changes in Experiment 3 involved stimulus identities. In 
different blocks, a target subset was defined by a different 
unique attribute (see Fig. 6).

(1)	 Shape. Subsets were defined by shape and designed 
to be highly discriminable. There were four different 
shapes in the experiment: a bar, an oval with three 
holes in it (looks like a pod), a mirrored S-shaped fig-
ure, and an oval with jagged edges (nicknamed “kiki”; 
Ramachandran & Hubbard, 2001). Each of these 
shapes fit in a rectangle 31 px × 93 px. All stimuli 
had the same color – blue. For example, a target subset 
could consist of blue bars among distractors subsets 
composed of blue pods, S-shaped figures, and kikis.

(2)	 Color. Subsets were defined by color. All stimuli had 
the same shape – a bar. For example, a target subset 
could consist of red bars among distractors subsets 
composed of green, blue, and yellow bars.

(3)	 Conjunction of two dimensions (Conjunction-Dimen-
sions). Here, a target subset shared each of its features 
with one of the distractor subsets, so that no feature was 
unique to the target subset. We used only two forms 

(bars and kikis) and two colors (red and blue) for this 
condition. For example, a target subset could consist 
of red kikis among distractor subsets composed of blue 
kikis, red bars, and blue bars.

The experiment had two further control conditions.

(4)	 Conjunction of two colors (Conjunction-Colors). This 
condition was the same as the Conjunction condition 
from Experiments 1 and 2. We wanted to measure the 
performance in this condition for a new set of observers 
to directly compare it with the Conjunction-Dimension 
condition (3). All stimuli were bicolor triangles (width 
– 40 pixels, height – 94 pixels). A target subset shared 
each of its colors with one of the distractor subsets so 
that no color was unique to the target subset. For exam-
ple, a target subset could consist of red-green triangles 
among distractor subsets composed of yellow-green, 
red-blue, and yellow-blue.

(5)	 Targets alone. As previously, this condition was used as 
a baseline to measure the accuracy of orientation aver-
aging when observers did not need to filter out distrac-
tors. Any errors would come from the averaging itself. 
In this condition, only a target subset of objects and no 
distractors were presented. We used only stimuli from 
the Conjunction-Dimension condition (3): either red 
kikis, blue kikis, red bars, or blue bars.

Fig. 6   The display examples of the Whole-distribution and the One-value displays for the Targets alone, Color, Shape, Conjunction-Dimensions, 
and Conjunction-Colors conditions in Experiment 3
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Procedure, design, and data analysis

The procedure was the same as in Experiment 2. Each par-
ticipant completed five blocks (Color, Shape, Conjunction-
Dimensions, Conjunction-Colors, and Targets alone) in ran-
dom order. The Whole-distribution and the One-value trials 
of each condition were intermixed within each block. At the 
beginning of each block, the participants performed a prac-
tice session consisting of 36 trials for familiarization with 
the task and stimuli. Each experimental session consisted of 
216 trials (1,080 trials in total).

In Experiment 3, we used a 2 (Target distribution: Whole-
distribution vs. One-value) × 5 (Target attributes: Color, 
Shape, Conjunction-Dimensions, Conjunction-Colors, and 
Targets alone) within-subject design. As in Experiment 2, 
the feedback about the correctness of the response in a trial 
was given based on the real average orientation of target tri-
angles presented on the screen. However, the primary meas-
ure was the percentage of the “implied” correct responses 
(the true average of a distribution from which individual 
orientations were sampled in each trial).

Results

We found a strong main effect of the distribution of ori-
entations in the target subset (F[1,28] = 85.48, p < .001, 
η2

p = .759). Over all conditions, observers were more 
accurate in the Whole-distribution than in the One-value 
condition (t(28) = 9.25, p < .001, Cohen’s d = 1.72). The 
main effect of the target-defining attribute was also signifi-
cant (F[4,112] = 22.67, p < .001, η2

p = .447). The most 

important results concern the difference between the One-
value and the Whole-distribution displays for each of the 
subset-defining, target attributes (see Fig. 7). The differ-
ence varies with target attribute, as seen in the significant 
interaction between target attribute and distribution factors 
(F[4,112] = 14.849, p < .001, η2

p = .347). Looking at the 
individual conditions, in the Targets alone, Color, Shape, 
and Conjunction-Dimension conditions, there was a clear 
advantage of the Whole-distribution condition over the 
One-value (ts(28) > 4.29, ps < .001, Cohen’s ds > .79). 
A small benefit is also present in the Conjunction-Colors 
condition but it does not survive after the correction for 
multiple comparisons (t(28) = 2.26, p = .03, Bonferroni-
corrected α = .01, Cohen’s d = 0.42).

To compare these advantages between different condi-
tions of the target-defining attribute, we calculated the dif-
ference between the percentage of correct responses in the 
Whole-distribution and the One-Value for each observer. 
Pairwise comparisons confirmed the impression of Fig. 7: 
this difference smoothly decreases while moving from con-
ditions on the left part of the figure to the right. There is no 
clear boundary between big and small differences. Statis-
tically, the Target Alone condition produced a larger dif-
ference between Whole-distribution and One-Value ver-
sion than any other condition (all ts(28) > 3.27, p < .004, 
Cohen’s d > 0.6) except for the Color condition (t(28) = 
0.858, p = .398, Bonferroni-corrected α = .01, Cohen’s d 
= 0.159). The Color result was not statistically different 
from Shape (t(28) = 2.26, p = .03, Bonferroni-corrected α 
= .01, Cohen’s d = 0.42), but it was higher than both of the 
Conjunction conditions (ts(28) > 5.09, p < .001, Cohen’s 

Fig. 7   The percentage of correct responses relative to the “implied” 
average orientation as a function of the target-defining attribute tar-
get distribution (Experiment 3). Note that correct responses in the 
One-value condition were calculated based on the whole target dis-

tribution, not based on what was presented on the screen. Error bars 
denote the SEM, with between-subject variance removed following 
Cousineau’s (2005) method
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d > 0.946). Shape was not statistically different from Con-
junction-Dimensions (t(28) = 2.18, p = .037, Bonferroni-
corrected α = .005, Cohen’s d = 0.407), but was greater 
than Conjunction-Colors (t(28) = 3.07, p < .005, Cohen’s d 
= 0.57); the Conjunction-Dimensions was not statistically 
different than Conjunction-Colors (t(27) = 1.35, p = .187, 
Cohen’s d = 0.251).

Discussion

As in the previous experiments, the baseline condition with-
out distractors (Targets alone) provided the best overall per-
formance and the greatest advantage of the availability of 
the whole target distribution (12%). The Color condition 
provided almost the same advantage (11%) as in the base-
line, which replicates our result from previous experiments: 
observers can easily select a subset of targets based on a dis-
tinct color. Our new condition (Shape) which tested another 
basic feature also showed good results but a little worse than 
the Targets alone baseline (7% advantage). Overall, we can 
conclude that observers take advantage of the availability 
of more than one member of the target distribution in each 
trial of the Target alone, Color, and Shape conditions and use 
this additional information for a more accurate calculation of 
the target average orientation. This result is consistent with 
the creation of an ensemble representation. Overall, we can 
also confirm our conclusion from Experiments 1 and 2: a 
unique feature (both color and shape) can be used as a basis 
of ensemble selection.

Two other conditions (Conjunction-Colors and Con-
junction-Dimensions) tested the hypothesis that preatten-
tive object files can be the basis of ensemble selection. The 
Conjunction of two colors showed the same advantage as in 
Experiment 2 (3%), but due to greater variability this time, 
this difference did not reach significance. This increase 
in variability might be explained if some observers “gave 
up” in this condition because it was the hardest one in this 
experiment, in contrast to Experiment 2, where observers 
had to perform the even harder Spatial conjunction condi-
tion. Based on the results, we cannot conclude that observers 
used more than one target item defined by conjunction of 
two colors to perform the task in this experiment.

The conjunction of two dimensions (shape and color) was 
the condition of primary interest in this experiment. Based 
on the visual search literature, we expected this condition 
to provide more reliable results compared to the Conjunc-
tion of two colors. We see a clear, if modest advantage in 
presenting the whole target distribution (5%) in this condi-
tion. Though it is a bit smaller than in the baseline and the 
Color conditions, it is statistically indistinguishable from 
that of the Shape condition. Based on this, we can conclude 
that observers used more than one conjunctively defined 
object to judge an average orientation of a target subset. 

This means that a preattentive object file could be used as a 
basis of ensemble selection.

An important conclusion of Experiment 3 is that we can-
not draw a strict boundary between cases where observers 
can select a subset of target items and where it is impossible. 
Unlike Experiment 2, where the results of the bound object 
condition (Spatial conjunction) showed the inability to select 
a target subset, there no large drop in the performance among 
conditions of Experiment 3. Both the proportion of correct 
responses and the advantage of the Whole-distribution over 
the One-value condition slowly decreases moving from left 
to right along the x-axis of Fig. 7: from the baseline through 
the feature condition to the conjunction conditions.

Experiment 4

Experiments 1–3 involve estimates of average subset orienta-
tion. To test the generalizability of the results, Experiment 4 
uses estimation of the average size of items. Many ensemble 
perception studies have been done using size estimation (for 
a review see: Whitney & Yamanashi Leib, 2018). Experi-
ment 4 uses the method of adjustment, instead of the 2AFC 
method of Experiments 1–3. This provides finer estimates 
of potential errors that may arise due to the noise in sam-
pling and averaging. It is the error distribution that is usually 
analyzed when using the method of adjustment, rather than 
binary accuracy as used in Experiments 1–3. Our critical 
predictions in Experiment 4 are framed in terms of the mean 
shift of this error distribution relative to the actual mean 
size of a target subset. If observers can select the subset and 
extract a size estimate, the average estimated size should 
be close to the actual average of the subset. If there are any 
difficulties in selecting a target subset, the estimated mean 
size should be biased toward the mean size of the whole set 
(target subset and other distractors put together). In Experi-
ment 4, subsets were defined as in Experiments 1 and 2. 
We compared subset size estimates against two baselines 
(also measured directly): ceiling performance, defined by 
size estimates on the subset in the absence of any distractors, 
and floor performance, defined by the estimated size of the 
whole display.

Method

Participants

One hundred and seventeen undergraduate students at the 
HSE University (99 females and 18 males; mean age = 20.1 
years, SD = 1.5 years) were recruited for participation in 
Experiment 4 for course credits. All participants reported 
having normal or corrected-to-normal vision and no neu-
rological problems or color deficiency. At the beginning 
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of the experiment, they gave informed consent online. The 
number of trials and participants (N = 100) were estimated 
using “power contour estimator” (https://​shiny.​york.​ac.​uk/​
power​conto​urs/), which has been developed by Baker and 
colleagues (Baker et al., 2021) and pre-registered. Param-
eters for “power contour estimator” have been taken from 
two conditions with the smallest differences in a bias of a 
pilot experiment using a similar design but not including 
the full list of conditions (mean difference = 0.05, within-
subject SD = 0.26, between-subject SD = 0.16). The data 
of 16 participants were excluded from the analysis because 
the accuracy of their responses or the reaction time did not 
meet our preregistered criteria of inclusion into the analysis 
(see “Data analysis and design” section for a description). 
Therefore, the data of 101 participants were analyzed.

Stimuli

The experiment was run online via the Pavlovia platform. 
Stimuli were presented on a gray background within the cen-
tral part of a screen subtending 600 × 600 px; the rest of the 
screen was not used during the experiment. This central part 
of the screen was subdivided into an imaginary grid with 5 
× 5 = 25 cells. Each cell side was 120 × 120 px. Each cell, 
except the central one, contained one item (a circle) from 
a sample set. Each item was placed in the cell center with 
a random jitter within 15 px along horizontal and vertical 
dimensions. The central cell of the grid never contained 

any circle and was only used to display a target item at the 
beginning of a trial and a response item after a sample set 
presentation.

A sample set in each trial consisted of 24 or eight circles 
depending on the condition. The circles had different sizes 
and colors. All circles were subdivided into three subsets 
based on their colors. One color subset was used as targets 
and two other subsets were used as distractors subsets (eight 
circles per subset). Each subset had its own mean size. The 
average size of one subset was larger than the grand aver-
age of all three subsets, the average size of a second subset 
was smaller than the grand average, and the average size of 
a third subset matched the grand average. The target subset 
could have either the largest or the smallest mean size. The 
grand average was randomly selected from a uniform distri-
bution ranging from 40 to 50 px in diameter in each trial. To 
generate the mean sizes of subsets and sizes of individual 
circles in proportion to the initially chosen grand average, 
we used a psychophysical scale of perceived sizes where the 
perceived size is a power function of the physical area with 
an exponent of 0.76 (Teghtsoonian, 1965). The average size 
of the largest subset was randomly chosen from an interval 
of 120–140% of the grand average; the average size of the 
smallest subset was randomly chosen from an interval of 
80–60% of the grand average. Sizes of individual circles 
were 64%, 88%, 112%, and 136% of the subset size aver-
age. These individual sizes were presented in two exemplars 
within each subset, thus yielding eight items with a uniform 

Fig. 8   The display examples of seven experimental conditions in Experiment 4

https://shiny.york.ac.uk/powercontours/
https://shiny.york.ac.uk/powercontours/
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size distribution. The actual mean size was never presented 
as a subset member.

There were seven conditions each reflecting how target 
and distractor attributes were defined (Fig. 8). Four of them 
were the same as in Experiment 1: (1) Feature-Unicolor 
(uniformly colored circles, each subset is defined by a unique 
color); (2) Feature-Bicolor (each circle is divided by two 
halves colored in a light and dark versions of the same hue, 
hues are unique to subsets); (3) Conjunction of two colors 
(targets have two colors, each color is shared by either of the 
distractor subsets); and (4) Spatial conjunction of position 
and color (one of the distractor subset shares both colors 
with the target but in a different spatial arrangement). In con-
dition (5) “Semi-feature”, the target subset and both distrac-
tor subsets had one color in common, while another color 
was unique for the target subset. For example, the target set 
could be red-green circles while the distractors sets consisted 
of red-blue and blue-red circles. Thus, green would be a 
unique target feature. In this condition, we were able to test 
whether the presence of a unique feature supports feature-
based selection when a common color potentially supports 
grouping between targets and distractors. The other two 
conditions were baselines.  Condition (6), “Targets Alone,” 
where only the target subset of bicolor circles was presented, 
served to measure the best possible averaging performance 
without distractors (“ceiling” performance). Condition (7), 
“Superset,” was identical to the Feature-Bicolor in terms of 
stimuli used but the task was to adjust to the mean size of 
all circles regardless of their colors. It was used to measure 
“floor” performance, that is, how observers would average 
sizes if they were “subset-blind.” It is important to measure 
performance in these two baseline conditions, rather than 
simply using the physical subset and superset mean sizes, 
because the baselines themselves can be biased. It has been 
previously shown that observers tend to give more weight to 
larger items in averaging tasks, which results in average esti-
mates biased towards the larger items. This bias is referred 
to as an amplification effect (Iakovlev & Utochkin, 2021; 
Kanaya et al., 2018). Therefore, properly estimated base-
lines should take into account these amplification biases. In 

turn, any biases that we can potentially observe in the vari-
ous subset selection conditions should be recalibrated given 
these biased baselines to draw correct conclusions about the 
selection processes.

Procedure

As in Experiments 1–3, each of the seven conditions 
described in the previous section was presented in a sepa-
rate block of trials. The order of blocks was randomized 
across observers. The colors of a target subset were assigned 
randomly at the beginning of each block and kept consistent 
throughout the entire block. Each trial began with a reminder 
presentation of a single, 40 pix diameter circle from the tar-
get subset at the center of the screen (see Fig. 9). It was vis-
ible until participants pressed the spacebar. Next, the critical 
display of circles was presented for 200 ms, followed by a 
blank screen for 200 ms, and then an adjustable probe cir-
cle was presented at the screen center. The probe circle had 
the same color(s) as the target subset, or it was black in the 
Superset condition when all presented circles had to be aver-
aged. The initial size of the probe was randomly chosen from 
the interval between 15 and 85 px in diameter. Participants 
could increase or decrease the size of the probe by holding 
the left mouse button and moving the mouse up or down. 
The participants were asked to adjust the test circle size to 
match the average size of all presented circles or to the size 
of the target subset, depending on the condition. When the 
answer was confirmed by pressing the spacebar, the par-
ticipants were given feedback: two circles appeared on the 
screen next to each other, one having the just adjusted size 
and another having the correct mean size of the target set 
along the perceived size scale (Teghtsoonian, 1965).

At the beginning of the experiment, participants com-
pleted a block of ten practice trials using the stimuli and task 
from the Superset condition. These trials were intended to 
get observers familiar with the averaging task and the adjust-
ment procedure. In addition, two first trials at the beginning 
of each block were considered as practice trials.

Fig. 9   The time course of a typical trial of Experiment 4. Each trial 
started with a precue of the target subset followed by a sample set 
for 200 ms. Participants were then asked to adjust the size of a probe 

circle to match the mean size of the target subset of circles. After 
response confirmation, feedback was shown
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Data analysis and design

Practice trials were excluded from the analysis. As per pre-
registration, we excluded from analysis individual trials if 
the reaction time was below 300 ms or the adjustment error 
was greater than 3 standard deviations (SDs) from the over-
all error distribution obtained from a given participant. We 
excluded all data from a participant if their average reac-
tion time was below 300 ms in any block or if their average 
adjustment error was greater than 3 SDs of all participants. 
The excluded participants were replaced by new participants 
to reach the preregistered sample size.

The experiment had a 7 (Target-defining attribute: Fea-
ture-Unicolor, Feature-Bicolor, Semi-feature, Conjunction, 
Spatial conjunction, Targets alone, and Superset) × 2 (mean 
size of the target subset: largest and smallest relative to the 
grand average of the superset) within-subject design. Over-
all, each participant was exposed to 22 trials per condition 
(308 trials in total). The experiment took approximately 30 
min.

The primary behavioral measure in this experiment (in 
all conditions, except Superset – see below) was the adjust-
ment error calculated as follows: Error = (Reported mean 
size – Correct mean size) / Correct mean size. This normal-
ized error was used as a measure of a systematic deviation 
from the true mean of a target set, or bias. It was calculated 
for each participant and each condition separately. When 
the bias is equal to zero, it can be interpreted as an unbiased 
mean size estimation; when the bias is positive or negative, 
it means an over- or underestimation.

To correctly estimate the amount of bias specifically 
associated with subset selection, we used two reference 
points corresponding to “floor” and “ceiling” performance. 

To estimate the “ceiling” performance, we used the mean 
bias obtained in the Targets-alone condition (no selection 
required). To calculate bias corresponding to the “floor” per-
formance, we asked participants to estimate the mean size of 
all the presented circles, but we calculated the bias relative 
to the mean size of the smallest and the largest subsets using 
the following formula (Reported superset mean size – Sub-
set mean size) / Subset mean size. In each trial of superset 
condition, the bias was calculated relative to both large and 
small subset means; both these biases were included into 
the analysis as separate measurements. Note that unlike the 
formula for other conditions, here we used the term “Subset 
mean size” instead of “Correct mean size” because the bias 
was calculated relative to the subset mean size the partici-
pants were not asked about. As a result, calculated biases in 
the Superset conditions modeled trials where participants 
completely failed the subset selection and report the mean 
size of all presented circles instead of the mean size of a 
target subset.

For the main part of the data analysis, we collapsed the 
biases from the smallest and the largest target subset condi-
tions. The main parameter of interest was the bias toward the 
grand average as a result of the subset selection difficulties. 
Without the collapse of the data, these difficulties caused a 
positive bias (i.e., an overestimation) when the target set had 
the smallest mean size; they led to a negative bias (i.e., an 
underestimation) when the target set had the largest mean 
size. Therefore, we reversed the sign of the errors (biases) 
in trials with the largest mean size of a target subset. As 
a result, positive and negative biases in a new scale cor-
responded to the bias toward the grand average and away 
from it (Fig. 10).

Fig. 10   The bias as a function of the unique attribute. The  lower 
boundary indicates the baseline bias for the perfect selection (i.e., 
Targets-alone condition). The upper boundary indicates the maximum 

bias caused by the complete failure of target subset selection. Error 
bars denote the SEM, with between-subject variance removed follow-
ing Cousineau’s (2005) method
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Results

Repeated-measures ANOVA showed a strong main effect 
of the target-defining attribute on bias (F(6,600) = 378.7.6, 
p < 0.001, η2

p = .67). The  post hoc comparisons showed 
that participants’ responses were significantly biased in 
all the conditions compared to zero (ts > 4.86, ps < .001, 
Bonferroni-corrected α = .01, Cohen’s ds > 0.34). The 
biases in the Feature conditions (i.e., Feature-Unicolor, 
Feature-Bicolor and Semi-feature) were statistically indis-
tinguishable from ones in the Targets-alone condition (ts < 
1.51, ps > .13, Cohen’s ds < 0.09). The biases in the other 
conditions statistically differ from each other (ts > 6.30 , 
ps < .001 , Bonferroni-corrected α = .017, Cohen’s ds > 
0.20); the smallest bias was in the Feature and Targets-
alone conditions (M = 0.08), there was a larger bias in 
the Conjunction condition (M = 0.2), then in the Spatial 
conjunction condition (M = 0.34), and the largest bias was 
in the Superset condition (M = 0.4), though that bias is not 
an error, per se. It is the definition of the upper bound to 
which we compare the other conditions.

We also performed analyses of biases in the smallest 
and the largest target subset conditions separately. The 
results were similar to the main analysis (see Online Sup-
plementary Materials for details).

Discussion

Although we used a different method of measuring ensemble 
averaging in Experiment 4, our results show the same pat-
tern as in Experiment 1. First, we observed that when the 
target subset had a unique feature not shared with any of the 
distractors, observers’ estimates were similar to the Targets 
alone baseline. That is, their ability to pick relevant items 
was not strongly impaired by the presence of the distractors. 
A new condition not tested in the previous two experiments 
was the Semi-feature: a target subset with one unique fea-
ture, and another feature shared with the distractors. Since 
performance in the Semi-feature trials was the same as in 
the Targets Alone as well as in both Feature-Unicolor condi-
tions, we conclude that a unique feature can be a good basis 
for ensemble selection even if this feature is just a part of the 
objects making an ensemble.

On the other hand, when the target subset was defined as 
a specific spatial conjunction of colors that were also pre-
sented in one of the distractor subsets with a different mean 
size, participants showed performance very close to what 
they showed in the Superset, floor condition. That can be 
compared to near-chance performance in the same condi-
tion of Experiments 1 and 2. These results suggest that the 
ability to correctly select a subset or even a few items in this 
condition is severely limited.

Finally, as in the other Experiments, we found a some-
what intermediate result in the Conjunction condition, 
where the pairing of colors in the target subset was unique 
but where each target color was also present in half of the 
distractor items. This intermediate pattern suggests that 
ensemble selection and processing based on conjunction is 
harder than that based on features, but, unlike spatial con-
junctions, some selection is still possible, even with only a 
200-ms presentation.

Since we measured baseline performances in the Targets-
alone conditions, we also were able to capture a systematic 
overestimation bias that we interpret as an amplification 
effect (Kanaya et al., 2018). Indeed, even when the target 
subset is presented alone and no distractors interfere with 
sampling only relevant items, observers overestimate the 
mean.

General discussion

This study aimed to answer questions about the represen-
tational basis of ensemble selection. We tested three candi-
dates for this role: basic features, preattentive object files, 
and bound objects. In four experiments, we found that condi-
tions where a target ensemble was defined by a feature not 
shared with any of the distractors provided a rather good 
ensemble averaging performance (both for orientation and 
size), i.e., comparable to the baseline without distractors. 
When the target subset was defined by a conjunction of fea-
tures (either from one or two dimensions) partly shared with 
distractors, some subset averaging was also possible, as the 
performance was more accurate than that predicted based on 
subset-blind sampling and averaging of all items on a display 
including distractors. Yet, averaging of subsets defined by 
a preattentive object file was less accurate than in the base-
line and in the feature conditions. Finally, performance was 
very poor when the target subset was distinguished by an 
exact spatial conjunction of features. Overall, these results 
suggest that basic features support ensemble selection and 
calculation. For preattentive object files – here defined as 
conjunctions of two features, but without specific knowl-
edge of their spatial relationship – some selection is possi-
ble. Responses may be based on a selection of an imperfect 
subset of the display or, perhaps, simply a small subset. In 
any case, we can reject the hypothesis that observers are bas-
ing their responses on the properties of a single item. When 
the subset is defined by the spatial relationship of features 
(a “bound object”), selection fails.

One could propose that the differences between condi-
tions reflect a difference in "crowding." Perhaps the spatial 
conjunction conditions produce more crowding and, thus, 
poor subset selection. This would not contradict the idea 
that spatial conjunctions do not produce good subsets. It 



794	 Attention, Perception, & Psychophysics (2024) 86:776–798

offers a hypothetical account that could be the basis for 
future research.

Experiments 2 and 3 directly tested the possibility that the 
results could be explained if observers selected only one ran-
dom item from the subset and based their response on its ori-
entation alone. The results showed that observers performed 
better than what would be expected from this one-item strat-
egy in all conditions, except for the Spatial Conjunction con-
dition. This condition produced performance near-chance, 
even worse than what would be expected from sampling just 
one relevant item per trial. The finding that the observers 
were better than with one-item sampling in most of the con-
ditions does not rule out the possibility that observers were 
sampling a small number of items, rather than the entire 
subset (Whitney & Yamanashi Leib, 2018). Based on the 
performance in our task, it is hard to distinguish between 
genuinely parallel processing of all relevant objects as an 
ensemble (e.g. Chong et al., 2008) and sampling strategies of 
different sorts (e.g., sampling the square root of the number 
of objects, Dakin, 2001; Kanaya et al., 2018; Whitney & 
Yamanashi Leib, 2018). Although the distinction between 
these two modes of processing is central to the discussion 
of the mechanism of ensemble representation, this is not 
the focus of our study. Here, our primary interest is in defin-
ing the attributes that can make an impression of a distinct 
ensemble out of heterogeneous visual “stuff.” The explana-
tions for the observed pattern of results will be quite differ-
ent depending on the view of sampling capacity. If the com-
putational mechanism of ensemble averaging is parallel and 
exhaustive, then any decrement in performance should be 
attributed to an increased probability of confusion between 
items from target and distractor subsets. The more difficult 
the task of distinguishing between the target and distractor 
objects is, the greater is the chance of occasionally including 
some of the distractors into a selected group. These intru-
sions would corrupt an estimated summary of that group 
which would otherwise be fully processed. In contrast, the 
sampling account would explain the deviations from the 
correct answer by proposing that the number of sampled 
objects is smaller in the conditions with harder distinction. 
With a smaller effective subset, the sample is less repre-
sentative of the true target subset, leading to the decrease in 
performance. Another convenient framework complimen-
tary to sampling account is a “functional visual field” (FVF) 
account that proposes that different portions of the visual 
display can be processed under different stimulus condition 
(Hulleman & Olivers, 2017; Motter & Simoni, 2008; Sand-
ers, 1963; Young & Hulleman, 2013). The FVF account 
would hold that only one item would fall into the FVF in 
the hardest condition. All the items in the display would be 
eligible for subset processing in the easiest conditions. In 
the intermediate conditions, the FVF would not cover all the 
items in the display, making ceiling performance impossible. 

Note that the two abovementioned scenarios (the including 
distractors into a target subset and decreasing the number 
of sampling objects) are not mutually exclusive and can be 
combined depending on circumstances. That is, the difficulty 
of target-distractor discrimination might cause both greater 
confusion and limited sampling. Moreover, some conditions, 
like the Feature conditions, might represent parallel ensem-
ble calculations over the entire subset, while results for other 
conditions, like the Conjunction conditions, might reflect 
the sampling of a few items (e.g., Baek & Chong, 2020; 
Treisman, 2006).

Our study can shed light on some questions related to 
preattentive vision, namely, which information is avail-
able for the visual system in a non-selective mode, without 
the need for focused attention to individual objects (Wolfe 
et al., 2011). Our results suggest that the visual system can 
quickly select and statistically summarize a group or ensem-
ble defined by a basic feature, which is not that surprising, 
as such a possibility has been previously documented (e.g., 
Chong & Treisman, 2005b; Halberda et al., 2006; Im & 
Chong, 2014; Sun et al., 2016). This fact reaffirms the pre-
dictions made by such models as Feature Integration Theory 
(Treisman & Gelade, 1980), Boolean map theory of visual 
attention (Huang & Pashler, 2007), and Guided Search the-
ory (Wolfe, 2021).

Also, we found some version of this ability for ensembles 
defined by specific preattentive object file attributes (fea-
ture bundles, Wolfe & Bennett, 1997). That is, not only do 
observers know that there are some green-red things present 
among green-blue and blue-red things in a scene, but they 
can also appreciate that these green-red things are larger or 
smaller on average than other things or that these green-red 
things are tilted to a particular direction. This is an impres-
sive result considering the minimal training received by par-
ticipants and the fact that the calculations of average size 
and orientation were shown to be quite challenging (e.g., 
compared to the centroid estimation – Inverso et al., 2016; 
Rodriguez-Cintron et al., 2019). Unlike the first result, this 
can be seen as a confirmation of a unique prediction of the 
Guided Search theory (Wolfe, 2021). The theory suggests 
that the visual system has access to preattentive object file 
information via the priority map – a theoretical and, perhaps, 
physiological structure summing parallel inputs from mul-
tiple feature maps (each feature map sends a signal about 
the presence of a target feature in each location). This archi-
tecture allows observers to have a rough idea of where the 
objects with the target characteristics are and to select them 
for later processing. However, the judgments made in the 
conjunction conditions are much less accurate than in the 
basic feature conditions. Observers may be sampling fewer 
items or including some of the wrong items in the sample. 
Nevertheless, observers are able to extract some ensemble 
information in a relatively short stimulus duration and with 
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quite irregular spatial organization (target subset is spatially 
intermixed with distractors).

Finally, when the target subset is defined by a specific 
spatial combination of features (as in the Spatial conjunction 
condition), we found that selection of such an ensemble is 
not possible. Consistent with many influential theories (e.g., 
Logan, 1994), fine encoding of exact feature conjunctions 
taking spatial relations into account (such as distinguishing 
between red-green and green-red objects) require the slow 
serial deployment of focused attention for feature binding 
(Treisman & Gelade, 1980; Wolfe et al., 2011; Wolfe & Ben-
nett, 1997). Therefore, it is no surprise that observers did not 
discriminate target subsets in this condition and judged the 
mean based on a superset (Experiment 4) or guessed it at 
near chance level (Experiments 1 and 2).

The question about the representational basis of ensemble 
selection is closely related to the question of how deeply 
the visual system processes objects before focused attention 
comes into play. This question has been broadly studied in 
visual attention literature using the visual search paradigm in 
particular. While visual search ultimately requires detection, 
recognition, and localization of individual objects, ensem-
ble perception is more about the global summarized (gist) 
impression of a large collection of objects. Yet, our results 
converge with those from the visual search. Of particular 
interest, evidence for the availability of preattentive object 
file characteristics for the formation of a distinct ensemble 
representation can be related to the fact that these charac-
teristics can be subsequently used to guide the search of 
individual objects.

Conclusions

Our study advances our understanding of what attributes 
of visual items can be effectively used by the visual system 
for the selection of a group of similar items among other 
items and for ensemble processing of this group. The results 
showed that observers can select an ensemble of objects, 
labeled with a distinct feature. It may be possible to assem-
ble an ensemble of objects with a specific conjunction of fea-
tures but without information about their exact relationships. 
This supports the idea that, even before attention arrives at 
an object, the visual system has global access to quite elabo-
rate representations of the large set of objects in the visual 
field. This information includes not only the distribution of 
separate features, but also what kinds of preattentive object 
files these features roughly form, and ensemble summary 
statistics of separate groups.
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