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Abstract
In visual search tasks in the lab and in the real world, people routinely miss targets that are clearly visible: so-called look 
but fail to see (LBFTS) errors. If search displays are shown to the same observer twice, we can ask about the probability 
of joint errors, where the target is missed both times. If errors are “deterministic,” then the probability of a second error on 
the same display–given that the target was missed the first time–should be high. If errors are “stochastic,” the probability 
of joint errors should be the product of the error rate for first and second appearances. Here, we report on two versions of a 
T among Ls search with somewhat degraded letters to make search more difficult. In Experiment 1, Ts could either appear 
amidst crowded “clumps” of Ls or more in isolation. Observers made more errors when the T was in a clump, but these errors 
were mainly stochastic. In Experiment 2, the task was made harder by making Ts and Ls more similar. Again, errors were 
predominantly stochastic. If other, socially important errors are also stochastic, this would suggest that “double reading,” 
where two observers (human or otherwise) look at each stimulus, could reduce overall error rates.
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Introduction

In visual search tasks in the laboratory and in the broader 
world, people make mistakes. Someone is looking for a tar-
get amidst nontarget stimuli, and they either fail to find it 
(a “miss” or “false negative”) or they declare it to be pre-
sent when it is not (a “false alarm” or “false positive”). 
The study of errors in search is an old one (Chun & Wolfe, 

1996; Nartker et al., 2023; Ruckmick, 1926; Titchener, 1924; 
Zenger & Fahle, 1997) because it is an important problem. 
As a society, we have designed tasks from cancer screen-
ing (e.g., Kundel, 2007), to airport security (e.g., Meuter & 
Lacherez, 2016), to lifeguarding at the neighborhood pool 
(Sharpe et al., 2023) where errors, especially false-negative 
errors, are very costly. Even under less dire circumstances, 
errors are likely to be undesirable. We do not want to miss 
typos in our correspondence. We do not want to walk right 
past our car in the parking lot. Thus, it is in our interest to 
understand and, if possible, reduce these errors.

Errors do not arise from a single cause. Modulations of the 
state of the searcher are important. Unsurprisingly, fatigued 
searchers make more errors (Hanna et al., 2018; Krupinski, 
2010; Meuter & Lacherez, 2016). Even when they are not 
tired, individuals experience a “vigilance decrement” in per-
formance if forced to perform a task for an extended period 
of time (Davies & Parasuraman, 1982; Greenlee et al., 2022; 
Rubinstein, 2020; Thomson et al., 2015). Observers who are 
responding too quickly will make more errors, too: the clas-
sic speed–accuracy trade-off (Heitz, 2014). Looking more 
closely at the search process itself, eye tracking can be used 
to distinguish between three broad classes of false-negative 
errors (Kundel et al., 1978): search errors, where the eyes 
never fixate on or near the target; recognition errors, where 
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the eyes do fixate on or near the target but only for a fraction 
of a second; and decision errors, where the observer spends 
time looking at a target but fails to correctly classify it (Waite 
et al., 2016; Wolfe, Lyu et al., 2022b).

Search and recognition errors can be lumped together as 
“perceptual” errors (Bruno et al., 2024). These are errors 
where the target can be readily identified when they are 
pointed out after it has been missed. Decision errors are dif-
ferent. They might be a matter of inadequate expertise (Oh, 
is that what a kumquat looks like?) or the stimulus might be 
fundamentally ambiguous; for instance, a clearly visible item 
that might or might not be a tumor. Radiologists’ perceptual 
errors can trigger malpractice suits (Berlin & Hendrix, 1998) 
when a finding is “retrospectively visible” (Kouskos et al., 
2004). In the driving literature, these errors (especially rec-
ognition errors) are known as “look but fail to see” (LBFTS) 
errors (Hills, 1980), building on the common statements by 
drivers asserting that they had looked, let us say, to the left 
but did not see the other vehicle that they subsequently hit.

There are multiple contributors to LBFTS errors (Wolfe, 
Kosovicheva et al., 2022a). Individuals do not fully process 
everything in the useful field of view ([UFOV], or functional 
visual field [FVF]) surrounding the current point of fixation. 
This might occur because they only select a subset of items in 
the FVF for adequate processing (Wu & Wolfe, 2022), or per-
haps because summary statistics computed across a functional 
visual field that does contain a target may not always allow for 
that target’s detection (Rosenholtz et al., 2012). In selecting 
items to process, observers can be “guided” to likely candidates 
if those candidates have the right features or are in the right 
locations (Wolfe, 2021). However, under some circumstances, 
they can be “misguided” away from the target. In the classic 
Simons and Chabris (1999) inattentional blindness (gorilla) 
experiment, observers were more likely to miss the gorilla if 
they were attending to actors in white shirts than when they 
attended to those in black shirts. Attending to white-shirted 
players guided observers away from a black gorilla. Observers 
may also fail to register a fixated and/or attended item if they 
end their processing of that item or set of items before identi-
fication is complete. If object identification is understood as a 
random-walk accumulation of information toward an identifi-
cation boundary (Schall, 2019), one can imagine that, in some 
cases, the accumulation is slow. At some point, an observer 
must conclude (probably unconsciously/implicitly) that it is 
time to move on without obtaining a clear answer. In some 
cases, this might involve abandoning an identifiable target 
before it was identified (Wolfe, Kosovicheva et al., 2022a).

There are other error mechanisms; for example, satisfac-
tion of search (Berbaum et al., 2019), also known as “sub-
sequent search misses” (Cain et al., 2013). Whatever the 
cause of a miss error, it is worth asking why this particular 
target was missed. We can identify two possibilities. The 
error could be determined by the stimulus. To give a trivial 

example, an item might not be seen because it was hidden 
or invisible. Less trivially, a clearly visible item might be 
missed regularly because it is presented in the wrong place or 
at the wrong time. Alternatively, an error could be random or 
stochastic; a situation where one item in a display is no more 
likely to be missed than another even though some percentage 
of items is missed by chance. Again, to offer a trivial exam-
ple: If a ring of 12 items is presented around fixation for only 
100 msec, observers will miss targets at a high rate. They will 
simply not have the time needed to process all 12 items. If the 
items are equally detectable and the observer does not have 
some positional bias, those errors will be stochastic. On the 
other hand, if the observer reliably starts at the top of the ring 
and processes items in a clockwise direction, the errors at 10 
or 11 o’clock could be considered deterministic.

Li et al. (2024) introduced a method to distinguish whether 
errors in a task were stochastic or deterministic. Each display 
in a simple search for a T among Ls was presented twice. 
If the cause of an error was entirely deterministic, then the 
probability of missing the item the second time, given that it 
was missed the first time, would be 1.0. If the errors were sto-
chastic, then the probability of missing both instance #1 and 
instance #2 would be the probability of missing instance #1 
multiplied by the probability of missing the target on instance 
#2. They would be statistically independent. There are some 
possible complications, however. For example, Os could 
guess, correctly or otherwise. They could also learn during 
the task, reducing the error rates on later appearances of the 
target. Regardless, in most circumstances, there would remain 
a clear difference between the predictions of deterministic and 
stochastic accounts. The data could lie between these extreme 
possibilities if errors were a mix of both types of error.

In the first experiment of Li et al. (2024), the target was a 
white letter T among Ls in various orientations on a uniform 
gray background. In this condition, errors were quite clearly 
stochastic in nature. The chance of missing both instance 
1 and 2 of a display was close to P(miss1) × P(miss2). In 
the second experiment, targets of different contrasts were 
presented on a variegated background of 1/f1.3 noise (which 
roughly mimics the texture of a breast x-ray). In this case, 
the joint errors fell in between the predictions of a stochastic 
and a deterministic account. When the results were examined 
as a function of the contrast of the target, it was clear that 
the deterministic component of the results was driven by 
the low contrast targets. That is, somewhat unsurprisingly, 
if a target was hard to see, it was more likely to be missed 
on both of its appearances. It is important to note that these 
twice-missed targets were still visible. As discussed above, it 
is not interesting to discover that invisible targets are missed.

The most interesting LBFTS errors are those where the 
target is not difficult to see but is missed, nevertheless. In 
the present paper, we used stimuli that were of high contrast 
in all cases but rendered potentially more difficult to find 
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either by the effects of crowding (Rosenholtz et al., 2012; 
Zhang et al., 2015) or by using more difficult but still high 
contrast “offset” T and L stimuli (see Figs. 1, 2, 3, 4, 5, 
6 and 7). To anticipate our findings, both of these searches 
produced sizable error rates, and, in both cases, the errors 
appeared to be primarily, but not entirely, stochastic.

Experiment 1: Manipulating task difficulty 
using stimulus crowding

Participants

Li et al. (2024) aimed for 20 participants. We added a crowd-
ing factor to the design of the experiment (described below), 
so we doubled the planned number to 40. In practice, we 
recruited 38 participants (15 males, 23 females, M = 30.10, 
SD = 8.25, min = 18, max = 50) through Prolific, an online 
crowdsourcing platform. All participants reported normal 
or corrected-to-normal vision and accepted an informed 
consent form presented before they began the experiment. 
Participants received 9 U.S. dollars in compensation for their 
participation in the experiment, which took an average of 55 
minutes to complete (min = 33, max = 84).

Stimuli and apparatus

In Experiment 1, observers searched for a T among Ls, as in 
the Li et al. (2024) paper. The vertical and horizontal line 
segments of the letters were 0.034 × screen height. (Stim-
uli are described in screen height units because the experi-
ments were conducted online. As a result, we could only 
control relative size and position of stimuli). Letters could 
be randomly oriented in 30 deg steps from 0 to 330 deg. 
The entire display was a square, 0.7 screen height units on 
a side, centered in the middle of the screen. Items could be 
scattered pseudorandomly or grouped into a crowded cluster 
of four items. When present, the target T had a 50% chance 
of appearing as a member of a cluster among clustered and 
independent distractors. For the other 50% of the trials, the 
target appeared independently, spatially separated from other 
items in the display. To create the displays, the screen was 
first divided into a regular 16 × 16 grid. A cluster was created 
from four adjacent locations in this grid. Each cluster was 
0.25 screen height away from any other. Two clusters were 
generated when set size was 18, while four clusters were gen-
erated when set size was 36. Each item within a cluster was 
then pseudo-randomly wiggled vertically and horizontally 
by 0.005 screen height from its original location. As a result, 
letters within a cluster were spaced from .062 to .088 screen 
height units apart from each other. Each un-clustered item 
was placed randomly, under the constraint that it was 0.125 
of screen height away from any other items. The distribution 

of clustered and un-clustered targets was essentially the same 
across the experiment. Letters were white on a gray back-
ground. Again, due to the nature of online testing, the precise 
contrast levels cannot be specified. In order to make the task 
more difficult and, thus, more likely to produce errors, Ts and 
Ls were drawn with their two line segments slightly intersect-
ing. Instead of T or L line junctions, all line crossings were 
+s. An example of a target-present trial is shown in Fig. 1. 
Note that, once found, it is clear that the T is a T.

Design and procedure

Participants were instructed to search for the letter T among 
Ls. They used the “j” key to indicate that they had found the 
target and the “f” key to report that they had not. The stimuli 
were present until response. If the space bar was pressed 
within 1 second after the initial response, the response would 
be reversed, allowing observers to correct motor errors. 
Reversed trials were excluded from analysis along with their 
paired trials. Targets were present on 50% of trials. Feedback 
was provided only after every block of 100 trials, where the 
percentage correct was displayed for that block. Set sizes 
were 18 and 36, crossed with target presence/absence. As 
noted, 50% of targets were presented in crowded clusters. 
There were 25 trials for each of the eight conditions (two set 
sizes × target presence/absence × clustered/un-clustered). 
The clustered/un-clustered variable had no impact on the 
appearance of target absent trials. Each of these 200 trials 
was presented twice. The resulting 400 total trials were shuf-
fled randomly so the repetitions of a trial could be separated 
from 1 to 399 positions. Participants went through an eight-
trial practice session illustrating all possible combinations 
of conditions before they started the experiment. We did not 
have extensive practice or performance criteria to enter the 
experiment since we were interested in errors.

Fig. 1   Sample target-present trial for Experiment 1
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Data exclusion

Participants were removed if they made more than 5% motor 
errors or if their d′ was less than 1.0. This removed four 
observers. For the remaining 34 observers, we analyzed the 
reaction times (RTs) in each observer × set size × target 
presence/absence condition. In each cell, we removed any 
trial with an RT greater than the cell mean plus 2.5 standard 
deviations for that cell. We removed trials with RTs less than 
200 msec as errors of anticipation. We also removed any trial 
with a motor error. If a trial was removed from analysis, its 
partner trial was also removed. This cleaning left 98.8% of 
trials for the 34 observers.

Results

Figure 2 shows the average RT for each observer as a func-
tion of Set Size for the first and second appearance of a trial 
and for crowded and uncrowded targets.

For the present trials, there is an obvious set size effect 
(three-way analysis of variance [ANOVA]), F(1, 66) = 67.2, 
p < .0001, partial eta square = 0.50. There was also an effect 
of first versus second appearance, with the second appear-
ance RTs being ~300-msec faster than the first, F(1, 66) = 
35.6, p < .001, partial eta-square = 0.35. This can be seen 
as a general learning effect since the second instances of 
each display, of course, appear later in the sequence of tri-
als. It is possible that there is a more trial-specific effect, 
akin to repetition priming or contextual cueing (“Oh,” a 
hypothetical Observer says, implicitly, “the last time I saw 

this pattern, the target was in that location”; Chun & Jiang, 
1998). However, contextual cueing typically involves multi-
ple presentations of the same display and here each display 
was only presented twice. Priming would be more likely 
with immediate repetition of the display, and that happened 
very rarely in this experiment. There was no effect of crowd-
ing on RT, F(1, 66) = 0.11, p = .74, partial eta-square = 
0.0017. No interactions approached significance (all ps > 
.15). The message in the RT data is that it does not take 
longer to find or to process crowded stimuli. For the absent 
trials, there is a clear effect of set size, F(1, 33) = 88.90, p 
< .0001, no effect of first versus second appearance, and no 
interaction (all ps > .30).

The false negative/miss error data are shown in Fig. 3.

Fig. 2   Response time for target-present trials (A) and target-absent trials (B). Error bars are ±1 SEM 

Fig. 3   Error rate for target-present trials (Miss errors). Error bars are 
±1 SEM 



Attention, Perception, & Psychophysics	

Error rates were quite high. This is probably a function of 
the effect of online testing (generally poorer performance) 
and the absence of trial-by-trial feedback. In this experiment, 
high error rates are actually desirable since they are the pri-
mary focus of our statistical analysis. Figure 3 shows the true 
error rates, but statistical analysis was performed on arcsin-
transformed error rates; a method for making error data more 
normally distributed for statistical analysis (Hogg & Craig, 
1995). Again, there was an obvious set size effect, F(1, 66) 
= 9.8, p < .01, partial eta-square = 0.09, with somewhat 
lower error rates on second appearance, F(1, 66) = 12.8, p = 
.0007, partial eta-square = 0.16. There was a strong effect of 
crowding on errors, with an average uncrowded error rate of 
22% and an average crowded rate of 31%, F(1, 66) = 27.6, p 
< .0001, partial eta-square = 0.29. No interactions reached 
statistical significance (all ps > .15). Though the crowded 
and uncrowded targets can be found in the same amount of 
time, observers are more likely to overlook targets embed-
ded in clusters.

Errors could be looked at in signal detection terms, rather 
than focusing only on miss errors. However, false-positive 
(false-alarm) errors are quite rare in this sort of task (except 
when subjects are performing very poorly). Twenty-five of 
34 observers had 0 or 1 false-positive errors on the first rep-
etition of the trials. Twenty-eight had 0 or 1 false-positive 
errors on the second repetition. There was no significant 
difference in false-positive errors between first and second 
repetitions or between crowded and uncrowded stimuli, all 
paired t tests t(33) < 1.3, p > .2.

The main purpose of these experiments was to look at 
the pairs of identical trials and to ask how the chance of 
missing the target on the second appearance of a display is 
related to the chance of missing that same target on the first 
appearance. The data for this analysis are shown in Fig. 4.

The figure plots the probability of missing the target on 
both its first and second appearances (P12 = P(joint error)) 
as a function of the probability of missing the target on its 
first appearance (P1). The deterministic prediction assumes 
that if the observer misses the first appearance of the target, 
they will miss the second appearance as well. A simple ver-
sion of this prediction would generate line of slope = 1. 
However, observers somewhat improve their performance 
between first and second appearance, so the deterministic 
prediction is adjusted to take this effect into account. The 
deterministic prediction for each observer is min(P1,P2). 
The simplest stochastic prediction is that P(12), the prob-
ability of a joint error, is P(1) multiplied by P(2), shown in 
red. Each purple outlined square represents the data from 
one of the 34 observers.

It is clear from Fig. 4 that errors made in both uncrowded 
and crowded conditions differed from either the stochas-
tic or deterministic predictions (all one-sample t tests, p < 
.0001). To determine the relative contributions of stochas-
tic or deterministic processes, we simulated the experiment. 
Each simulated observer missed a proportion (P) of targets 
on the first appearance of those targets. To simulate observ-
ers with various levels of skill or diligence, P was randomly 
chosen between 0 and 0.5. Some fraction (k) of errors were 
declared to be deterministic, so if a subject missed P targets, 
P × k of those were deterministic errors. The remainder P 
× (1 − k) would be stochastic. For the second appearance, 
if the item had been missed in a deterministic manner on 
first appearance, it was deemed to be missed on the second 
appearance. For all remaining items, the chance of miss-
ing on the second appearance was P × (1 − k). From these 
simulated data, we can calculate the probability of missing 
both items. Figure 5 shows the results for three levels of 
deterministic errors, plotted in the manner of Fig. 4.

Fig. 4   Probability of missing the target on both its first and second 
appearances (P12) as a function of the probability of missing the 
target in its first appearance (P1). Each data point represents one 
observer. The red triangles show stochastic predictions for each par-

ticipant, and the blue triangles show the deterministic predictions. 
Black line shows the simple deterministic prediction: (P12) = (P1). 
Red line shows the simple stochastic prediction: (P12) = (P1) ✕ (P1). 
(Color figure online)
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As can be seen, the simulated results fall between the 
stochastic and deterministic predictions. The average dis-
tance between the results for each simulated observer and 
the stochastic and deterministic predictions for that observer 
are an almost linear function of the proportion of simulated 
deterministic errors on first appearance. Thus, we can use 
the proportion,

as an estimate of the relative frequency of the two types of 
error for each real observer. Figure 6 shows these proportions 
for each observer in crowded and uncrowded conditions.

The proportions are clearly biased toward the stochas-
tic prediction for most individual observers. The means of 

(P(miss both) − Stochastic)∕(Deterministic − Stochastic)

0.20 (uncrowded) and 0.30 (crowded) are significantly less 
than 0.5 (both one-sample t tests, p < .0001). There appear 
to be more stochastic errors in the uncrowded condition, 
but this falls short of statistical reliability, t(31) = 1.928, 
p = .063. Note there are only 31 observers in this analysis 
because (P12-S)/(D-S) was undefined for three observers in 
either or both of the crowded or uncrowded conditions. An 
informal item analysis did not indicate that specific displays 
were missed by most observers. Instead, the data indicate 
that most errors were stochastic. In principle, there could 
be two types of deterministic errors: individual, where an 
observer misses a display most of the time and collective, 
where all observers miss a specific display most of the time. 
Our design is probably underpowered to assess this distinc-
tion with any precision.

Discussion

The data indicate that observers make more errors when the 
target in this T among L search is located in a crowded clus-
ter of items rather than being more isolated in the display. 
In and of itself, this is not very interesting. Crowded targets 
in cluttered displays would be expected to be harder to find. 
The question for this paper is why those additional items are 
missed. If we had hidden some items behind occluders, they 
would be missed in an obviously deterministic manner. Are 
targets, hidden by crowding, missed in a similarly determin-
istic manner? In fact, this does not appear to be the case. Most 
of these errors appear to be stochastic, the product of some 
random process as opposed to being determined by the lay-
out of the display. This could appear somewhat contradic-
tory. Crowding determines—at least, to some extent—the 
error rate in this task, but those errors are largely random 
in nature. Why would observers randomly miss more targets 

Fig. 5   Simulated plots of the chance of missing a target on both 
appearances, P(joint error), against the error rate on first appearance, 
P1. The curved red line and the dark red dots show the pure stochastic 

prediction. The black line and blue dots show the deterministic pre-
dictions. The purple dots show the simulated results for deterministic 
error proportions of 0.2, 0.5, and 0.8. (Color figure online)

Fig. 6   Proportion of the deterministic errors, based on (P(joint error) 
− S)/(D − S), where D and S are the deterministic and stochastic pre-
dictions for each observer. Values closer to zero reflect a greater pro-
portion of stochastic errors
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in a crowded cluster? This may be a function of incomplete 
processing of the display. When the eyes land at a location in 
the visual display, items will be processed within a “functional 
visual field” (FVF) around the point of fixation. We make 3–4 
voluntary saccades and fixations per second. We can select 
items like these Ts and Ls at a rate of one every 50 msec or 
so. Thus, if more than 5–6 items fall within the FVF, the eyes 
may move on without all items within the FVF having been 
selected (Wolfe et al., 2021; Wu & Wolfe, 2022). An unse-
lected item might be successfully selected on another fixation, 
or it might be missed again. In any case, an item is more likely 
to be randomly omitted from a crowded region when more 
items fall in the FVF. Note that this account does not require 
a commitment to serial selection of items within the FVF. It 
could be that all items in the FVF are processed but some are 
not processed adequately. If we assume that inadequate pro-
cessing is more likely in a crowded FVF, the consequences 
would be similar to the incomplete serial sampling account. 
In either case, which item is missed during a fixation might be 
entirely random or it could be that some configurations lead to 
more frequent misses. The present results suggest that, if this 
incomplete processing is the mechanism for these errors, most 
of items that failed to get selected, failed by chance, producing 
mostly stochastic errors.

Experiment 2: More difficult Ts and Ls

Results of Experiment 1 indicated that most of the false-
negative errors were stochastic. Perhaps, if the task were 
more difficult, observers would develop strategies or bad 
habits that would make the errors more deterministic (e.g., 
by always reading from upper left to lower right and quit-
ting before finding targets in that lower right corner. This 
is a fictional example, not a hypothesis). To assess this, we 
tested observers with a more difficult version of the T among 
L search that did not rely on a crowding manipulation. An 
example of the search task is shown in Fig. 7.

Stimuli and apparatus

Compared with the stimuli in Fig. 1, we further increased 
the overlap between the line segments making up the Ts and 
Ls. This makes the target more difficult to recognize among 
distractors, as can be appreciated if you search for the T in 
Fig. 7. Note again, however, that the T is unambiguously 
recognizable, once found. The vertical and horizontal lines 
of upright targets and distractors were 0.04 screen height. 
The short segments beyond the intersection of the lines were 
0.01 screen height. The orientations of items were randomly 
chosen from rotations in 30 deg steps from 0 to 330 deg from 
vertical. All items were placed in a square region of 0.7 × 
0.7 screen height, centered on the middle of the screen. The 

minimum distance between any two letters was constrained 
to be greater than 0.1 screen height. Set sizes of 18 and 36 
were tested. As shown in the figure, the items were white on 
a mid-gray background. Again, online testing makes precise 
photometric details unobtainable.

Participants

In total, 31 participants (14 males, 17 females, M = 28.19, 
SD = 7.57, min = 20, max = 54) were recruited online 
through Prolific, an online crowdsourcing platform. All par-
ticipants reported normal or corrected to normal vision and 
accepted an informed consent form presented on the screen 
before they began the experiment. Participants received 12.9 
U.S. dollars in compensation for their participation in the 
experiment, with payment adjustments made to align with 
Prolific guidelines. The study took an average of 89 minutes 
to complete (max = 111, min = 58).

Design and procedure

There were 400 total trials divided between two set size con-
ditions (18 and 36) fully crossed with target status (target 
absent or present). Two copies of each of 200 unique trials 
made up the full set of 400 trials. Thus, each combination 
of set size (18, 36), target presence (yes, no), and repetition 
(first, second) consisted of 50 trials. These were presented 
in a random order. Participants went through a four-trial 
practice session, illustrating the trial types, before they 
started the experiment. Again, we did not prefilter observers 
because higher error rates were the goal of the experiment 
(though we disallowed random performance; see below). 
There was no trial-by-trial feedback, but participants were 
shown their accuracy rate after every block of 100 trials. 
Stimuli were visible until the observer made a response. 
After the response, observers were allowed a one second 

Fig. 7   Hard search for T among Ls. Set size = 36
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window within which to press another key if they knew that 
they had made an error (e.g., a simple motor error or a trial 
where they saw the target while in the process of making an 
initial response). The next trial began at the end of this one 
second period.

Data exclusion

Of the 31 participants, 10 were excluded for poor perfor-
mance, defined as d′ < 1. This was a hard task and, given our 
interest in errors, we could choose to accept all participants. 
However, especially with online studies, there are participants 
who just do not appear to be doing the task. These are the 
participants we attempted to remove. For the remaining 21 
observers (11 males, 10 females), we removed trials where 
participants reversed their response, indicating that they had 
made a motor error. These constituted 1% of trials. Trials with 
RTs <200 msec were removed as errors of anticipation. RTs 
greater than 2.5 standard deviations above the mean in each 
condition were also removed. For any removed trial, we also 
removed its “twin” from analysis. In total, 4.4% of trials were 
removed, reflecting the great difficulty of the task.

Results

Figure 8 shows the RT data for correct target-present and 
target-absent trials for Experiment 2. As would be expected, 
there was a strong set size effect on the present trials (two-
way ANOVA), F(1, 20) = 94, p < .0001, partial eta-square 
= 0.82. The slopes of the RT × Set Size functions were 63 
msec/item for the first appearance and 74.5 msec/item for the 
second. This marks the task as relatively difficult and inef-
ficient but indicates that it was not necessary to fixate each 
item individually in order to identify it. If fixation is required 
on each stimulus, the target-present slope would be in the 
range of 125–150 msec/item. There was also a main effect 
of appearance order with the second appearance of a display 
producing a substantial decrease in RT (612 msec), F(1, 20) 
= 14.2, p = .0012, partial eta-square = 0.41. The interaction 
of set size and appearance order was not significant (p = 
.15). The same was the case for the absent trials. There was 
a main effect of set size, F(1, 20) = 138.5, p < .0001, partial 
eta-square = 0.87. The main effect of appearance order was 
marginal, F(1, 20) = 4.31, p < .0509, partial eta-square = 
0.18. The interaction was not significant (p = .46).

Figure 9 shows the false negative (Miss) errors. More 
errors were made with larger set size, F(1, 20) = 26.4, p < 
.0001, partial eta-square = 0.57. As in Experiment 1, the 
ANOVA was conducted with arcsin-transformed data, as 
is recommend for error rate data. The effect of appearance 
order was not significant, F(1, 20) = 1.8, p < .20, partial eta-
square = 0.08, but the interaction with set size was F(1, 20) 

= 5.5, p < .03, partial eta-square = 0.21. Errors declined on 
second appearance for set size 18 but not for set size 36. The 
overall error rate was 43.7%, again, indicating that this was 
a difficult task. Note that the false-positive (false-alarm) rate 
is very low with 14 out of the observers having 0 or 1 total 
false-positive errors. The average false-positive rate was just 
1.8% yielding a d’ of 2.3 for the task.

As in Experiment 1, the main interest here was in the 
nature of the errors. Are they stochastic or deterministic? 
Figure 10 shows the probability of missing both instances 
of a display plotted against the probability of an error on the 
first appearance of a display (purple squares). Also shown 
are the deterministic (min(P1,P2)) (blue) and stochastic (P1 
× P2) (red) predictions for each observer.

18 27 36

5000

7500

10000

12500

15000

Set size

R
e
s
p
o
n
s
e
 t
im

e
 (
m
s
e
c
)

Present - first

Present - second

Absent - first

Absent -second

Fig. 8   Response time as a function of set size and first vs second 
appearance for target-present and target-absent trials. Error bars show 
±1 SEM 

0.0

0.2

0.4

0.6

M
is
s
 R
a
t
e

18 36 18 36

First Second

Fig. 9   False negative (Miss) errors as a function of set size and first 
versus second appearance. Error bars show ±1 SEM 



Attention, Perception, & Psychophysics	

On visual inspection, it seems clear that the data lie closer to 
the stochastic prediction. Statistically, the data differ strongly 
from the deterministic prediction for both set sizes, t(20) > 
5.63, p < .0001. For the stochastic prediction, the data differs at 
set size 18, t(20) = 14.06, p < .0001, but not at set size 36, t(20) 
= 1.14, p = .26. Figure 11 shows the relative distance of each 
observer’s data from the stochastic prediction (0) to the deter-
ministic prediction (1), based on the proportion (P12-Stochas-
tic)/(Deterministic-Stochastic). The set size 36 data are closer 
to the stochastic prediction than the set size 18 data (Fig. 11). 
This is not technically significant at the p < .05 level, t(20) = 
2.085, p = .0501, but it is suggestive. By this estimate, ~80% 
of errors are stochastic at set size 18 and ~90% at set size 36.

General discussion

The two experiments reported here add to our understanding 
of look but fail to see (LBFTS) errors (Hills, 1980; Wolfe, 
Kosovicheva et al., 2022a). LBFTS errors are those where 
observers fail to see—or, at least, to report—the presence 
of stimuli that are clearly visible and recognizable. In the 
present experiments, these targets were Ts among Ls. All 
the stimuli were presented at high contrast on uniform back-
grounds. The Ts were made somewhat harder to discriminate 
from the Ls by having their composite lines overlap to form 
a + junction, but the target, T, was not hard to discriminate 
from an L. Nevertheless, observers missed a sizable number 
of targets. They made very few false-positive errors. These 
were errors of omission, not commission. The stimuli were 
visible until the observer responded, so these are not errors 
that were caused by lack of time or by information degrad-
ing through masking the display. These are quite straight-
forward LBFTS errors. The errors are akin to typos but, in 
a sense, more dramatic, since, in the T among L case, the 
observers know exactly what they were looking for while a 
typo can be any member of a broad category.

Our strategy for investigating the cause of these errors is 
to present a set of search displays twice. With this method, 
we can distinguish between stochastic and deterministic 
patterns of error. The critical measure is the proportion of 
target-present displays that produce errors on both their 
first and second appearance of the display. If the errors 
are completely deterministic, then if observers miss the 
target on the first appearance they should miss it the next 
time too. If the errors are completely stochastic, then the 
result on the second appearance would not depend on the 

Fig. 10   P(joint error) plotted against the error rate on first appear-
ance. Each purple outlined square represents one observer. Blue tri-
angles show the pure deterministic predictions (min(P1,P2)) for each 
participant. Red triangles show the stochastic prediction (P1 × P2). 

Black line shows the simple deterministic prediction: (P12) = (P1). 
Red line shows the simple stochastic prediction: (P12) = (P1) × (P1). 
(Color figure online)

Fig. 11   Relative distance of each observer’s data from the stochastic 
prediction (0) to the deterministic prediction (1)
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fate of the first appearance. Rather, the chance of missing 
the target both times would be the product of the chance 
of missing it the first time and the chance of missing it the 
second time.

The results of both experiments show a strong bias toward 
stochastic errors, though the data do not fit the stochastic 
prediction perfectly. In one case (Exp. 2, set size 36), the 
data and the prediction of the stochastic model were not sta-
tistically different. In all other cases, there were more joint 
errors than a pure stochastic model would predict. The dis-
tance between the stochastic and deterministic predictions 
constitutes an approximately linear scale that can be used to 
partition errors into stochastic and deterministic fractions. 
The highest proportion of deterministic errors was found in 
the crowded condition of Experiment 1. Even there, only 
30% of errors appeared to be deterministic. The uncrowded 
condition produced 20% errors—not significantly differ-
ent. In Experiment 2, 20% of set size 18 errors were deter-
ministic against 11% of the set size 36 errors—again, not 
significantly different. In Experiment 1, there were signifi-
cantly more errors, overall, in the crowded condition. We 
hypothesize that the higher overall error rate in the crowded 
condition arises from a failure to process all the items within 
a functional visual field (FVF) around the current point of 
fixation. In a clump, there will be more items on average, 
increasing the chance that an individual target item will not 
be adequately attended. Moreover, targets in clumps are 
more likely to be subject to crowding effects (Whitney & 
Levi, 2011). Potentially, crowding effects might account for 
some of the deterministic errors. However, crowding will 
interact with the location of fixation. Relatively random fixa-
tions might allow crowding to contribute to stochastic errors 
rather than deterministic errors because on one random fixa-
tion near a clump, the target might be more peripheral and 
more likely to be missed. That said, some displays might 
be more conducive to missing a target. The argument for 
deterministic displays would be stronger if it were the case 
that all or nearly all observers missed the target in some 
specific displays. Analyses of errors as a function of specific 
display did not reveal any that were particularly prone to 
errors. The patterns of paired errors look quite idiosyncratic. 
However, this study was probably underpowered to detect 
any but the largest effects of this sort, leaving the topic for 
future research. Moreover, if the density of items in clumps 
was a cause of more deterministic errors in Experiment 1, 
we might expect more deterministic errors in the larger set 
size of Experiment 2; this was not the case.

As a direction for future study, it might be valuable to 
repeat these experiments while eye tracking participants, 
something that could not be done with online testing. Eye 
tracking would allow us to distinguish between what Kundel 
and colleagues (1978) call “search errors,” where the eyes 
never land in the vicinity of the target, and “recognition” 

errors, where the eyes fixate on or near the target but then 
refixate elsewhere within a fraction of a second. Understand-
ing repeated errors would benefit from seeing where observ-
ers fixated. It would also be valuable to repeat these experi-
ments with different types of stimuli. In particular, it would 
be valuable to know if similar results would be obtained with 
more naturalistic and or socially significant stimuli.

Why is it worth trying to understand the roots of look but 
fail to see errors? As noted at the outset, some of these LBFTS 
errors occur in settings where the failure can be dangerous in 
one way or another. If we understood why we made the errors, 
we would have a better chance of reducing them in settings 
where it is important to do so. Consider the case of medical 
image perception (Samei & Krupinski, 2018). We know that 
even skilled radiologists make errors (Berlin, 2007; Goddard 
et al., 2001; Waite et al., 2016), and that many errors are “ret-
rospectively visible” (Boyer et al., 2004; Nodine et al., 2001). 
Retrospectively visible errors are those where the finding is 
clearly visible when pointed to, after the fact. It is usually 
obvious that the radiologist looked at the image. In eye-track-
ing studies, it can frequently be seen that the eyes fixated on or 
near the missed item (Kundel et al., 1978; Wolfe et al., 2021), 
making these quite clearly LBFTS errors.

Obviously, these LBFTS errors can have negative impact 
on patients. These are also the sorts of “perceptual errors” 
(Berlin & Hendrix, 1998) that result in malpractice charges 
(Duszak & Robinson, 2022). If such cases get to trial, they 
often go poorly for the radiologist because juries and the 
legal system more generally have trouble understanding how 
an LBFTS error can be anything but “negligence.” If at least 
some LBFTS errors in radiology are similar in kind to the 
errors studied here, it could be argued that it is not reason-
able to consider them evidence of negligence (Bruno et al., 
2024). They might be better considered to be examples of 
“normal blindness” (Wolfe, Kosovicheva et al., 2022a); a 
problem that we should try to mitigate, not litigate.

Is there evidence that radiologist errors share any common 
mechanisms with the largely stochastic errors produced in our 
T among L searches? We suggested, above, that one path to 
stochastically missed Ts was the failure to process all of the 
items inside a functional visual field around the current point 
of fixation. Evidence for this comes from eye-tracking stud-
ies. In standard search, observers reliably fixate on the target 
once they locate it. We have found that, even when the eyes 
are fixated right next to the target, the target is only fixated 
immediately thereafter about 50% of the time. The other 50% 
of saccades move the eyes elsewhere in the field (Wu & Wolfe, 
2022). A very similar pattern of results is seen when mammog-
raphers search for signs of cancer in a mammogram (Wolfe 
et al., 2021). When the eyes are right next to the lesion (~1 deg 
away), there is only a 50% chance that the next fixation lands 
on the lesion. Of course, radiologists do not miss 50% of can-
cers. They make many fixations while examining the image, 
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and, if they do not notice the lesion the first time, they will 
probably find it when the eyes fixate in the right neighborhood 
after a later saccade. Still, on the occasions when they do not 
get back to the right location, they will miss a target that could 
have been detected. Thus, there is some reason to believe that a 
common cause could lie behind LBFTS errors in simple search 
and in medical image perception. Similar accounts could be 
offered for some driving errors, errors in security screening, 
and other important and error-prone search tasks.

Does this account of, at least some, LBFTS errors offer any 
hope for reducing these errors? In fact, the answer is “yes.” 
Recall that the bulk of the errors in these experiments appear 
to be stochastic in nature. The chance of missing the target 
in its second appearance was largely, though not completely, 
independent of the chance of missing the same target the first 
time. That suggests that one way to reduce these errors is to 
search twice. Consider, for example, the set size 18 data for 
Experiment 2. Observers missed 41% of targets on the first 
appearance, 36% on the second appearance, but only 20% on 
both appearances. This is somewhat more than the 0.41 × 
0.36 = 15% predicted by complete independence but there is 
a reduction in errors that could be obtained by looking twice.

There are many ways to look twice. The same observer 
can look twice, as in the present experiments. More typi-
cally in radiology, two experts would look at a case. This is 
common practice in Europe, where so-called double reading 
clearly reduces false-negative errors (e.g., Taylor-Phillips 
et al., 2018). There are variations on double reading. For 
instance, does the second reader know what the first reader 
reported or not? That is, are the two readers truly independ-
ent? Double reading is not common in the USA. The obvious 
problem is that two independent reads will take twice as long, 
will markedly increase expense, and would require more radi-
ologist time when it is already hard to adequately staff radi-
ology clinics. Moreover, since expert radiologists miss very 
few clearly visible cancers, the benefits of double reading will 
be small in absolute terms. Still, if your errors are stochastic, 
an extra set of eyeballs is an obvious intervention.

These days, those eyeballs would not need to be human. 
Advances in artificial intelligence make it reasonable to 
propose AI as the second reader (e.g., Dahlblom et al., 
2023; Koch et al., 2023). A skilled AI may not replace the 
human reader, at least not in the short term, but, again, if 
errors are largely stochastic, two independent readers will 
catch most of each other’s random errors.

In sum, we evaluated the nature of errors in a simple 
but demanding search task. In the two versions tested here, 
observers made substantial numbers of false-negative errors. 
Our analysis indicates that the largest proportion of these 
errors were stochastic in nature. This adds to our understand-
ing of LBFTS errors and points to the potential of double 
reading to improve the performance of a system, even if the 
individual continues to make errors.
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