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Humans continuously scan their visual environment for relevant information. Such visual search behavior
has typically been studied with tasks in which the search goal is constant and well-defined, requiring rela-
tively little interplay between memory and orienting. Here we studied a situation in which the target is not
known in advance, and instead, memory needs to be dynamically updated during the actual search.
Observers compared two simultaneously presented arrays of objects for any matching pair of items—a
task that requires continuous comparisons between what is seen now and what was seen a few moments
ago. To manipulate the balance between memorizing and scanning, we ran two versions of the task. In
an eye-tracking version, the objects were continuously available and could be scanned with relative ease.
The results suggested that observers preferred scanning over memorizing. In a mouse-tracking version, per-
ceptual availability was limited, and scanning was slowed. Now observers substantially increased their
memory use. Thus, the results revealed a flexible and dynamic interplay between memory and perception.
The findings aid in further bridging the research fields of attention and memory.

Public Significance Statement
Human observers can search their environment on the basis of abstract rules that demand a dynamic
interplay between memory and perception, but this ability has received little investigation. This study
uses the tools of the visual search literature to reveal how humans perform a task based on such an
abstract rule; in this case, “find any matching pair of objects.” The results demonstrate a continuous
and flexible trade-off between internal memorizing and external perceptual sampling, depending on
the balance of costs associated with these processes.
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To be as adaptive as possible, the visual system selects informa-
tion that is relevant to the goals and needs of the organism, at the
expense of irrelevant information. Such selection mechanisms
have been extensively studied using visual search tasks, in which
observers are asked to look for a target object in an array of distractor
objects—akin to finding a spatula in the kitchen drawer, or a familiar

face in a crowd. By the nature of the task, visual search requires a
continuous interplay between memory (for what one is looking
for) and perception (of what one is currently presented with).
Standard theories of visual search therefore assume the activation
of a representation of the search target in either working memory
or long-term memory, which then guides or biases attention toward

Aoqi Li https://orcid.org/0000-0001-6373-6638
Part of the data in this articlewas previously presented in a poster at the annual

meeting of the Vision Sciences Society. The preprint of this article is posted on
PsyArXiv (preprint doi: https://psyarxiv.com/568q9/). All data have been made
publicly available via OSF and can be accessed at https://osf.io/bvnjg/.
Aoqi Li was funded by the China Scholarship Council. Zhenzhong Chen

was funded by the National Natural Science Foundation of China (Grant
62036005). Jeremy M. Wolfe was funded by the National Science
Foundation (NSF; Grant 1848783) and the National Institutes of Health
(Grant EY017001). Christian N. L. Olivers was funded by the Dutch
Research Council (NWO; Grant 453-16-002).

Christian N. L. Olivers developed the study concept. Aoqi Li, Jeremy
M. Wolfe, and Christian N. L. Olivers contributed to the study design.
Aoqi Li conducted testing and data collection. Aoqi Li analyzed and
interpreted the data under the supervision of Christian N. L. Olivers
and Jeremy M. Wolfe. Aoqi Li drafted the manuscript. Zhenzhong
Chen, Jeremy M. Wolfe, and Christian N. L. Olivers provided
critical revisions. All the authors approved the final manuscript for
submission.

Correspondence concerning this article should be addressed to Aoqi Li,
School of Remote Sensing and Information Engineering, Wuhan
University, Luoyu Road 129, Wuhan, Hubei, PR China, 420079. Email:
aqli@whu.edu.cn

Journal of Experimental Psychology: General
© 2023 American Psychological Association
ISSN: 0096-3445 https://doi.org/10.1037/xge0001390

1

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xge0001390.supp
https://doi.org/10.1037/xge0001390.supp
https://doi.org/10.1037/xge0001390.supp
https://doi.org/10.1037/xge0001390.supp
https://orcid.org/0000-0001-6373-6638
https://orcid.org/0000-0001-6373-6638
https://orcid.org/0000-0001-6373-6638
https://psyarxiv.com/568q9/
https://psyarxiv.com/568q9/
https://osf.io/bvnjg/
https://osf.io/bvnjg/
https://osf.io/bvnjg/
mailto:aqli@whu.edu.cn
mailto:aqli@whu.edu.cn
mailto:aqli@whu.edu.cn
https://doi.org/10.1037/xge0001390
https://doi.org/10.1037/xge0001390
https://doi.org/10.1037/xge0001390


memory-matching features in the sensory input (e.g., Carlisle et al.,
2011; Chan & Hayward, 2013; Duncan & Humphreys, 1989;
Olivers et al., 2011; Wolfe, 2021; Woodman & Chun, 2006; Yu,
Hanks, & Geng, 2022).
Visual search behavior has typically been studied under condi-

tions where the object one is looking for is known in advance and
the memory is therefore relatively fixed: The participant is given a
specific target instruction (e.g., “search for the red square”), which
then remains the same for at least the duration of the trial, but
more often for a block of trials or even an entire experiment. It is
probably fair to say that overall, researchers have taken the target
memory as a given, and have focused on the visual selection process
itself—thus ignoring the memory aspect of the search process
(although there are exceptions, e.g., Alfandari et al., 2019; Carlisle
et al., 2011; Wolfe, 2012). Yet, in natural behavior, what to look
for may not always be so concretely defined (Alexander &
Zelinsky, 2011; Bravo & Farid, 2009; Intraub, 1981; Maxfield &
Zelinsky, 2012), and observers may adopt different representations
for the same target, depending on the task and the other items in a
display it needs to be distinguished from (Becker et al., 2010;
Geng & Witkowski, 2019; Geng et al., 2017; Hout & Goldinger,
2015; Kerzel, 2019; Navalpakkam & Itti, 2007; Witkowski &
Geng, 2019; Yu, Johal & Geng, 2022; see Yu et al., in press). In
addition, there are real-life situations requiring a more flexible,
dynamic use of memory during the search task itself. Imagine the
scenario where one is looking for any two matching socks in a dis-
organized sock drawer. The observer holds the abstract search goal
of finding a pair in memory, while there is no concrete a priori
description of any specific sock. Instead, while looking through
the jumble, the observer needs to continuously update their memory
of what they have just seen in order to search for a potential match
with what is looked at next. Little is known about how observers
solve such tasks in which continuously changing perceptual input
is compared to continuously changing memory, on the basis of an
abstract overarching rule. To address this, in the current study, we
investigated how humans search for pairs.
Figure 1a illustrates the core task. Observers were asked to search

for a single pair of matching items across two simultaneously pre-
sented arrays of objects. That is, there was one object in the right dis-
play that had a matching counterpart in the left display. The task was
to find the match and click on the counterpart. How might observers
solve this task? A priori there are a number of strategies. First,
observers might first exhaustively scan through and memorize one
set (e.g., the array on the left in Figure 1a) and then move over to
search through the other set (i.e., the array on the right). To apply
this strategy, especially as set sizes get larger, one would have to
make use of a large capacity, relatively persistent memory system.
Work on recognition memory for objects makes it clear that a long-
term memory exists and can rapidly encode many objects (Brady
et al., 2008; Standing, 1973). Previous work has shown that this
large capacity memory can be recruited in serving visual search
(Wolfe, 2012). In what has become known as “hybrid search,”
observers can memorize dozens of candidate targets and then search
from all of them at the same time within arrays of distractor objects.
If this strategy is indeed being adopted in pair search, we expect
extensive initial scans of the reference display and few transitions
between displays.
Alternatively, observers could choose to limit memory usage. In

the most extreme version of such a model (cf. Olivers et al.,

2011), an observer would select one object from the left set, then
search through the entire right set. If the target is not found, they
would go back to the left set to select and remember the next poten-
tial target, repeating this process until the match is found. Thus, this
strategy predicts limited scanning of the reference display, combined
with many transitions between displays. Finally, memory usage may
be adapted to a level between these extremes. For example, current
memory usage could be limited to visual working memory capacity,
which is typically around three to four objects (Cowan, 2001; Luck
& Vogel, 2013).

Importantly, the memory strategy that observers choose may
depend on multiple factors that are associated with the various
task components, specifically the costs of associated actions

Figure 1
Example Trials and Experiment Design

Note. (a) Graphic illustration of a trial in the eye-tracking version of the
experiments. The trajectory of the eye icon represents eye movements. (b)
Graphic illustration of the mouse-tracking experiments. The trajectory of
the mouse arrow represents mouse movements. Red circles (in both ver-
sions) indicate that the target object is selected. (c) All possible combina-
tions of reference set size and click set size. See the online article for the
color version of this figure.
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(Hayhoe, 2017). Several studies on working memory have delved
into this topic by use of an object-copying task. For example,
some researchers varied the extent of movement required to accom-
plish the task (Ballard et al., 1995; Draschkow et al., 2021) while
others varied the delay to stimulus availability (Somai et al.,
2020). Each of these factors affected the use of memory, indicating
that behavior is determined by a trade-off between cognitive effort
and action-associated physical or time costs. To explore towhat extent
such principles can apply to visual search, we ran two versions of the
pair search task, which are illustrated in Figure 1a and 1b, and which
differed in two task components that might influence the memory
strategy: (a) the perceptual availability of objects (which determines
the amount of visual information that can be used to guide scanning);
(b) the motor costs of eye/mouse movements. In the eye-tracking ver-
sions of the experiment (Experiments 1a and 1b), all objects in both
arrays were visually available from the start of the trial. The continu-
ous perceptual availability of the objects and the low motor costs of
eye movements may foster a strategy that minimizes memory use,
while maximizing scanning, as the world could be used as an external
memory (cf. O’Regan, 1992). In contrast, in the mouse-tracking ver-
sions of the experiment (Experiments 2a and 2b), all objects were con-
tinuously covered from view, and only one object was revealed at a
time, when the mouse pointer was hovering above it. The covering
of objects was meant to minimize the visual information available
for attentional guidance and, in combination with the mouse move-
ments this made consulting the outside world more expensive. In
this case, therefore, we expected to see a stronger reliance on (internal)
memory.
To compare the overall search performance in both types of task,

reaction times (RTs) were analyzed as a function of set size (i.e.,
“search slopes”). To assess the trade-off between external sampling
and internal memorizing, we took the number of transitions between
the two arrays and the total dwell time within a display before the
observer transitioned to the other display as the main measures.
The first measure is a proxy for external sampling, that is, the number
of times the observer consulted the external world for information.
The more information that is remembered from a display, the
fewer transitions between displays are necessary. The second mea-
sure serves as the indication of memory encoding—under the
assumption that the longer observers spend in a display, the more
they try to remember. Finally, we used simulation models to estimate
the number of memory observers used in this task and whether this
depends on task-specific strategies.

Method

Participants

Two eye-tracking experiments (1a and 1b) and two mouse-
tracking experiments (2a and 2b) were conducted. For Experiment
1a, we tested 25 participants (eight male, 17 female, Mage= 22,
SD= 3.65, min= 19, max= 35), among whom one participant
was added as a replacement for a participant who failed the calibra-
tion. For Experiment 1b, we tested another 25 participants (five
male, 20 female, Mage= 22.5, SD= 3.39, min= 18, max= 29).
All participants had normal or corrected-to-normal vision and
were naïve to the purpose of the experiments.
Due to the COVID-19 pandemic, our laboratories were closed, and

the two mouse-tracking experiments were therefore run online.

Considering data from the online experiments might be noisier than
data from the standard laboratory experiments, we increased the sam-
ple size to 35. For Experiment 2a, we tested 35 participants (four
male, 29 female, two undetermined, M= 20, SD= 1.78, min= 18,
max= 24). For Experiment 2b, we tested another 35 participants
(four male, 31 female, M= 20, SD= 2.59, min= 18, max= 31).

All participants signed an informed consent form before they
began the experiment. Participants received monetary compensation
or credits for participation afterwards. The protocol was approved by
the Scientific and Ethics Review Board of the Faculty of Behavioral
and Movement Sciences of the Vrije Universiteit Amsterdam.

Stimuli and Apparatus

The eye-tracking experiments (Experiments 1a and 1b) were pro-
grammed in Matlab with Psychtoolbox-3. As shown in Figure 1a,
the stimuli, consisting of two object sets in two side-by-side boxes,
were displayed on a 24-in AUS XG248Q monitor with a refresh
rate of 239 Hz and a spatial resolution of 1,920× 1,080 pixels.
For eye-tracking Experiment 1a, each box was partitioned into an
invisible 4× 4 grid and each object fit in a square of 96× 96 pixels
centered within a grid of 192× 192 pixels. For eye-tracking
Experiment 1b, each box was partitioned into an invisible 5× 5
grid and each object fit in a square of 85× 85 pixels centered within
a grid of 154× 154 pixels. In each trial, objects were randomly
chosen from a public dataset of 4,760 objects (Konkle et al., 2010).
Each object only appeared once (whether as a target object or as a
distractor) during the experiment. Participants sat with their heads
immobilized in a chin rest at a distance of about 70 cm from the
screen. One degree of visual angle corresponded to about 44 pixels
on the screen. Eye movements were recorded using an EyeLink
1000 Plus system (SR Research Ltd, Ontario, Canada) with a sam-
pling rate of 1,000 Hz. A 9-point calibration and validation was
done at the beginning of each block. Three participants in
Experiment 1a and one participant in Experiment 1b failed the
9-point calibration. For these participants, 5-point calibrationwas con-
ducted instead.

The online mouse-tracking experiments (Experiments 2a and 2b)
mimicked the eye-tracking experiments (Experiments 1a and 1b),
except as noted below. The mouse-tracking experiments were pro-
grammed in javascript with the jsPsych library and were run on
the online platform, Cognition. The stimuli consisted of two object
arrays presented in two side-by-side boxes. For Experiment 2a, each
box was composed of a 4× 4 grid and each object fit in a square of
81× 81 pixels within a grid of 90× 90 pixels. For Experiment 2b,
each boxwas composed of a 5× 5 grid and each object fit in a square
of 72× 72 pixels within a grid of 80× 80 pixels. In each trial,
objects were chosen from a public dataset of 2,400 objects (Brady
et al., 2008). Due to a large number of trials and the limited number
of pictures in this database, in Experiment 2a, each object only
appeared once as a target but could return as a distractor. In
Experiment 2b, each object only appeared once.

Design and Procedure

As shown in Figure 1a, the task involves searching for a single
matched pair from the two arrays of objects. In both the eye-tracking
(Experiments 1a and 1b) and the mouse-tracking experiments
(Experiments 2a and 2b), participants were instructed to start from
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the left display (reference display) and click on the paired target in
the right display (click display). For Experiments 1a and 2a, set
sizes of each object displayed varied independently. Set size could
be 1, 2, 3, 6, or 12 with the constraint that the set size of the left-hand
display was always equal to or smaller than the right-hand set size.
For Experiments 1b and 2b, set sizes of both object displays were
12 on each side, 16 or 20. All possible combinations of set sizes
are presented in Figure 1c.
In the eye-tracking experiments (Experiments 1a and 1b), all the

objects were masked by Gaussian blobs at the beginning of each
trial. Participants were asked to hover the mouse on any object in
the left display to start the trial. Once a trial was started, all the
objects became visible, as shown in Figure 1a. Participants were
instructed to click on the target object in the right display when
they found the match. Any click on a nontarget object would also
end the trial and incur a time penalty. For Experiments 1a and 1b,
the time penalty would increase 2 s with each additional error
until it reached an upper limit of 11 s. The time penalty was reset
at the beginning of each block. For Experiment 1a, there were 15
conditions differing in the set sizes of the two object displays.
Each condition consisted of 35 target-present trials. All 525 trials
were randomly intermixed across five blocks of 105 trials. For
Experiment 1b, there were three conditions with 40 target-present
trials per condition. All 120 trials were mixed across three blocks
of 40 trials.
In the mouse-tracking experiments (Experiments 2a and 2b), all

the objects were masked by Gaussian blobs during the whole trial.
Participants were asked to move the mouse onto any object in the
left display to start the trial. Once a trial was started, only one object
would appear at a time when the mouse was hovering above the
Gaussian blob placed at the corresponding position, as shown in
Figure 1b. Participants were instructed to click on the target object
in the right display when they found the match to an item from the
left. Any click on a nontarget object would also end the trial and
incur a time penalty. For Experiment 2a, the time penalty would
increase 2 s with every error. For Experiment 2b, the time penalty
would increase 3 s with every error but would be reset at the begin-
ning of each block. For Experiment 2a, there were 15 conditions dif-
fering in the set sizes of the two object displays. Each condition
contained 22 target-present trials. All 330 trials were mixed across
five blocks of 66 trials. For Experiment 2b, there were three condi-
tions with 20 target-present trials per condition. All 60 trials were
mixed across six blocks of 10 trials.

Data Processing

Data Exclusions

For one participant of Experiment 1a, the calibration was substan-
tially off in one block, and that block was removed from the dataset
(0.8% of the total data). In Experiment 2a, about 0.7% of trials were
removed due to a technical problem with the online testing.
In Experiments 1a and 1b, accuracy was generally high, and no

participants were excluded (see Appendix Figure A1 in the online
supplemental materials). As shown in Appendix Figure A2 in the
online supplemental materials, two participants in Experiment 2a
and two participants in Experiment 2b made more than 50% errors
in at least one of the conditions, and their data were excluded to pre-
vent a disproportionate speed–accuracy trade-off. At the trial level,

in both experiments, for each participant, trials with incorrect
responses were excluded from the analysis. We also excluded RTs
that were +2.5 SDs from the mean for each condition. With rules,
96.3% and 94.7% of the total data remained for Experiment 1a
and Experiment 1b, respectively, and 88.4% and 84.3% of the
total data remained for Experiment 2a and Experiment 2b, respec-
tively. Finally, note that to simplify analyses, participants were
instructed to start their scan in the left display and click on the target
in the right display. However, in the eye movement version, there
were still a small number of trials in which the first fixation landed
on the right display. To simplify the eye movement analyses, we
excluded these trials for eye movement-related analyses (while
retaining them for the RT analyses). This amounted to 1.5% and
1.1% of the total data in Experiment 1a and Experiment 1b,
respectively.

Dependent Measures

For both the eye-tracking and the mouse-tracking experiments, we
focused on three primary dependent measures: manual RT (defined as
the time it took participants to find the right member of the pair and
click on it) and its slope across set sizes as a measure of search effi-
ciency, the number of transitions between displays (related to the num-
ber of times participants returned to a display to sample external
information) as a proxy for external sampling, and the total dwell
time before each transition (related to the number of objects partici-
pants successfully encoded into internal memory) as a proxy for inter-
nal memorizing. The latter was expected to correlate with the number
of mouse/eye movements, which we also analyzed as secondary mea-
sures in Appendix B in the online supplemental materials.

Response Times

Search efficiency was analyzed using slope values derived from
linear regression models fit on the RTs, as a function of reference
and click set sizes. Slope values were then compared against zero
using one-tailed one-sample t tests. Slope values for the reference
and click set sizes were compared to each other using two-tailed
paired t tests. Performance in the two different types of experiment
(eye tracking vs. mouse tracking) was then also directly compared
using two-way mixed ANOVAs with set size as the within-
participant factor and experiment (Experiments 1 and 2) as the
between-participant factor. Because in Experiments 1a and 2a, the
reference set sizes and click set sizes were not manipulated orthog-
onally, we combined them into a single factor reflecting the combi-
nation of two set sizes.

Eye and Mouse Movement Analyses

For eye-tracking experiments, gaze data were parsed into saccades
and fixations by the EyeLink online parser. Velocity and acceleration
thresholds were set as 35 (°/s) and 9,500 (°/s2), respectively. For the
mouse-tracking experiments, only the sequences of visited objects
and visit durations (how long each object was revealed by the
mouse) were registered.

Transitions refer to the eye movements or mouse movements from
the left-hand reference display to the right-hand click display or vice
versa. In the eye-tracking experiments, a transition was defined as
eye position crossing the midline from the left to the right or vice
versa. The number of transitions was counted by the frequency of
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saccades crossing the midline. In the mouse-tracking experiments, a
transition was defined as the mouse moving from a left object to a
right object or vice versa.
The dwell time before each transition was the cumulative amount of

time during which participants inspected the objects in one display
before transitioning to the other. In the eye-tracking experiments,
since participants could get little information during fast saccadic
eye movements, the dwell time before each transition was defined
as the sum of all fixation durations in one display before a transition
to the other display. In the mouse-tracking experiments, the dwell
time before each transition was calculated as the sum of time during
which participant hovered the mouse above a masked location to
reveal the hidden object in one display before a transition to the other.
Same as for the RTs, both the number of transitions and the

dwell times were then analyzed using linear regression models,
of which the slopes were compared using one-sample t tests and
paired t tests. The eye and mouse experiments were compared
using a mixed ANOVA.
Note that on a small number of trials in the eye movement version,

observers ended with the last fixation on the left display, even though
they successfully clicked on the target on the right display. How
these trials were dealt with depended on the specific situation.
When the trial contained only fixations on the left, we assumed
that participants already clicked before their eyes had landed on
the target, and therefore we simply added one fixation on the right.
We did the same under the scenario where observers had visited
the right display just before ending on the left display, but they failed
to land close to the target (i.e., within the arbitrary criterion of 3 dva).
In contrast, if one of the fixations in the right display was close to the
target (i.e., within the same arbitrary criterion of 3 dva), we counted
that fixation on the right as the target fixation and disregarded all left
display fixations at the end of the trial.

Transparency and Openness

The design and analysis plans for the experiments were not pre-
registered. All data have been made publicly available via OSF
and can be accessed at https://osf.io/bvnjg/.

Results and Discussion

Figure 2a and 2bb illustrate two typical search trajectories, as
taken from example trials from Experiment 1a (eye tracking) and
Experiment 2a (mouse tracking). While the combination of set
sizes (3, 12) was the same for both trials, the search behavior is rather
different. In Figure 2a (eye experiment), the observer chose to search
in three cycles, each time picking one object from the reference dis-
play and then looking for it in the click display before returning to
the reference display to select the next object. This pattern would
be consistent with a strategy characterized by limited memory use,
at the expense of more sampling. In contrast, in Figure 2b (mouse
experiment), the observer completed the task in one cycle, as s/he
chose to first look at all three objects in the reference display and
then make only a single transition to the search display. This pattern
is more consistent with a strategy that reduces the sampling, and
instead makes more use of memory.1

To assess the search behavior in this type of matching task in
general, and whether such behavior differed systematically for the
two scanning modalities (eye vs. mouse), we focused on three

primary dependent measures: (a) manual RT, including its slope
across set sizes as an overall measure of search efficiency; (b) the
number of transitions between displays as a proxy for external sam-
pling; and (c) the dwell time before each transition, as a proxy for
attempted memory encoding.

Reaction Time

Figure 3a shows the group average of RTs plotted as a function of
both reference and click set sizes for Experiment 1a (eye tracking)
and Experiment 2a (mouse tracking). Figure 3b shows the group
average of RTs plotted as a function of overall set size for
Experiment 1b (eye tracking) and Experiment 2b (mouse tracking).
We analyzed search efficiency by linear regression models of
RTs as a function of the reference and click set sizes, for each indi-
vidual participant, using the fitlm function in Matlab (min R2= .88,
max R2= .99). In Experiment 1a, the slopes for the reference set
size (795 ms/item) and the click set size (70 ms/item) were both sig-
nificantly greater than zero as confirmed by one-sample t tests, one-
tailed, reference display, t(24)= 18.74, p, .001, Cohen’s d= 3.75;
click display, t(24)= 14.61, p, .001, Cohen’s d= 2.92. More

Figure 2
Visualization of Search Trajectories

Note. (a) Example trial from Experiment 1a (eye tracking:
Participant04-Block1-Trial40). (b) Example trial from Experiment 2a
(mouse tracking: Participant01-Block1-Trial54). Object images are gray-
scale here to facilitate visualization (they were full color in the experi-
ments). The colors of markers (dots for the eye-tracking trial and
triangles for the mouse-tracking trial) and lines code the order of fixation,
moving through blue–green–yellow–red. The final red cross indicates the
click position. Note that the set size combinations are the same for both
trials (3, 12), but the search behavior is quite different. See the online arti-
cle for the color version of this figure.

1 Note that exhaustive scanning of a display does not necessarily mean
exhaustive memorizing of that display. In a later section, we will use simula-
tion models to estimate how much is being memorized from a scan.
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interestingly, the slopes for the reference set size were significantly
larger than those for the click set size (paired t test, two-tailed),
t(24)= 17.72, p, .001, Cohen’s d= 3.54. For Experiment 1b,
the linear regression model (min R2= .62, max R2= 1.00) revealed
a mean search slope of 1,478 ms/item, which was significantly
different from zero (one-sample t test, one-tailed), t(24)= 14.84,
p, .001, Cohen’s d= 2.97.
For Experiment 2a, too, linear regression models fit to both set

sizes were run for each participant (min R2= .91, max R2= 1).
Here too the slopes for the reference set size (1,388 ms/item) and
the click set size (298 ms/item) were both significantly greater
than zero by one-sample t tests, one-tailed, ref, t(32)= 20.42,
p, .001, Cohen’s d= 3.55; click, t(32)= 26.54, p, .001,
Cohen’s d= 4.62, and the slopes for the reference set size were
again significantly larger than those for the click set size (paired
t test, two-tailed), t(32)= 16.31, p, .001, Cohen’s d= 2.84. For
Experiment 2b, the linear regression method (min R2= .18, max

R2= 1.00) yielded a mean slope of 2,320 ms/item, which was sig-
nificantly greater than zero (one-sample t test, one-tailed), t(32)=
11.52, p, .001, Cohen’s d= 2.00.

Finally, an ANOVA directly comparing the two modalities (eye
tracking vs. mouse tracking) showed that in the mouse task, observ-
ers were overall slower (Experiment 1a vs. 2a, F[1, 56]= 165.48,
p, .001, ηp

2= 0.75; Experiment 1b vs. 2b, F[1, 56]= 61.28,
p, .001, ηp

2= 0.52) and less efficient (Experiment 1a vs. 2a,
F[14, 784]= 56.43, p, .001, ηp

2= 0.50; Experiment 1b vs. 2b,
F[2, 112]= 5.79, p, .01, ηp

2= 0.09).
A number of conclusions can be drawn. First, all the set size effects

were linear in both versions of the task. This may have some implica-
tions for theway observers used their memory in this task, and wewill
return to this aspect in the General Discussion. Second, when the ref-
erence set size and the click set size were manipulated separately, RTs
were muchmore affected by the reference set size than by the click set
size. Note that this does not mean that observers actually spent�800–
1,300 ms looking at each object in the reference display. Rather, the
reference set size acts as a multiplier: The more objects there are in
the reference display, the more often observers also need to search
through the click display. In any case, the differential slopes for the
reference and click displays are consistent with observers largely treat-
ing them as the respective source and target for the comparison. Third,
the mouse version of the task appears to be more effortful overall, as
reflected in overall RTs as well as efficiency (slopes). This is not sur-
prising given that (a) the mouse version involved objects that were
covered until visited by the mouse, and (b) mouse movements them-
selves tend to be slower (and probably more effortful) than eye move-
ments. The results thus confirm that the two versions involve different
levels of effort in scanning the individual objects, which is important
when we consider the exact scanning behavior and what it tells us
about memory usage. We now turn to this scanning behavior.

Eye/Mouse Movements: Number of Transitions

Figure 4a shows the group average number of transitions plotted as
a function of reference and click set sizes for Experiment 1a (eye
tracking) and Experiment 2a (mouse tracking). Figure 4b shows
the group average number of transitions plotted as a function of over-
all set sizes for Experiment 1b (eye tracking) and Experiment 2b
(mouse tracking). For Experiment 1a, linear regression models
of number of transitions as a function of both set sizes (min
R2= .86, max R2= .99) showed that the slopes for the reference
set size and the click set size were both significantly greater than
zero, as confirmed by one-sample t tests, one-tailed, reference dis-
play, t(24)= 22.97, p, .001, Cohen’s d= 4.59; click display,
t(24)= 11.59, p, .001, Cohen’s d= 2.32. The slopes for the refer-
ence set size were also larger than those for the click set size (paired
t test, two-tailed), t(24)= 20.98, p, .001, Cohen’s d= 4.20. For
Experiment 1b, the linear regression model (min R2= .38, max
R2= 1) revealed a mean slope significantly different from zero (one-
sample t test, one-tailed), t(24)= 10.59, p, .001, Cohen’s d=
2.12. The same fits for Experiment 2a (min R2= .48, max
R2= .98) again revealed slopes for the reference set size and the
click set size being significantly greater than zero by one-sample
t tests, one-tailed, ref, t(32)= 9.91, p, .001, Cohen’s d= 1.73;
click, t(32)= 9.40, p, .001, Cohen’s d= 1.64; plus the slopes
for the reference set size were significantly larger than those for
the click set size (paired t test, two-tailed), t(32)= 8.52, p, .001,

Figure 3
Reaction Time

Note. (a) Reaction time as a function of set sizes in Experiments 1a (Eye)
and 2a (Mouse). Red vertical lines represent the distance from data points to
the fitted surface. (b) Comparison between reaction times (RTs) in
Experiments 1b (Eye) and 2b (Mouse). Error bars represent between-
subject standard errors. The equations describe the intercept and the set
size slopes for the best linear fits. See the online article for the color version
of this figure.
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Cohen’s d= 1.48. For Experiment 2b, the linear regression (min
R2= .002, max R2= 1) yielded a mean slope significantly greater
than zero (one-sample t test, one-tailed), t(32)= 5.11, p, .001,
Cohen’s d= 0.89. Finally, an ANOVA directly comparing the eye-
tracking and mouse-tracking experiments showed that in the latter
type of task, observers made fewer transitions overall (Experiment
1a vs. 2a, F[1, 56]= 226.76, p, .001, ηp

2= 0.80; Experiment 1b
vs. 2b, F[1, 56]= 209.36, p, .001, ηp

2= 0.79) and also fewer tran-
sitions per set size increment (Experiment 1a vs. 2a, F[14, 784]=
141.56, p, .001, ηp

2= 0.72; Experiment 1b vs. 2b, F[2, 112]=
49.65, p, .001, ηp

2= 0.47).
Thus, as for the manual RTs, here too we observe linear effects

for both reference and click set sizes, and a stronger influence of
the reference set size indicative that observers indeed used it as the
reference. Importantly, the number of transitions was clearly reduced
in the mouse version of the task.

Eye/Mouse Movements: Dwell Time Before Each
Transition

For both eye-tracking and mouse-tracking experiments, we com-
puted the average dwell time separately for the reference and the
click displays. Here we focus on the reference display while dwell
times for the click display are reported in Appendix Figure B1 in
the online supplemental materials. Analyses on secondary measures
underlying the dwell time, notably the number of visits/fixations
and the average dwell time per visit/fixation are also shown
in Appendix B in the online supplemental materials. Appendix
Figures B2–B5 in the online supplemental materials show that the
total dwell time was primarily driven by the number of fixations/
mouse-visits, rather than the fixation/mouse-visit duration.

Figure 5a shows the group average of dwell time before each tran-
sition plotted as a function of reference and click set sizes for
Experiment 1a (eye tracking) and Experiment 2a (mouse tracking).

Figure 5
Dwell Time Before Each Transition (ref)

Note. (a) Dwell time before each transition as a function of set sizes in
Experiments 1a (Eye) and 2a (Mouse). Red vertical lines represent the dis-
tance from data points to the fitted surface. (b) Comparison between dwell
time before each transition in Experiments 1b (Eye) and 2b (Mouse). Error
bars represent between-subject standard errors. The equations describe the
intercept and the set size slopes for the best linear fits. See the online article
for the color version of this figure.

Figure 4
Number of Transitions

Note. (a) Transition number as a function of set sizes in Experiments 1a
(Eye) and 2a (Mouse). Red vertical lines represent the distance from data
points to the fitted surface. (b) Comparison between transition number in
Experiments 1b (Eye) and 2b (Mouse). Error bars represent between-
subject standard errors. The equations describe the intercept and the set
size slopes for the best linear fits. See the online article for the color version
of this figure.
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Figure 5b shows the group average of dwell time before each transi-
tion plotted as a function of overall set sizes for Experiment 1b (eye
tracking) and Experiment 2b (mouse tracking). For Experiment 1a,
linear regression models of dwell time as a function of both set
sizes (min R2= .86, max R2= .99) showed that the slopes for the
reference set size and the click set sizewere both significantly greater
than zero as confirmed by one-sample t tests, one-tailed, reference
display, t(24)= 14.33, p, .001, Cohen’s d= 2.87; click display, t
(24)= 4.83, p, .001, Cohen’s d= 0.97. The slopes for the refer-
ence set size were also larger than those for the click set size (paired
t test, two-tailed), t(24)= 13.81, p, .001, Cohen’s d= 2.76. For
Experiment 1b, the linear regression model (min R2= .55, max
R2= 1.00) revealed a mean slope significantly different from zero
(one-sample t test, one-tailed), t(24)= 3.44, p, .01, Cohen’s d=
0.69. For Experiment 2a too, linear regression models fit to both
set sizes were run for each participant (min R2= .74, max R2=
1.00). Here too the slopes for the reference set size and the click
set size were both significantly greater than zero by one-sample t
tests, one-tailed, ref, t(32)= 13.14, p, .001, Cohen’s d= 2.29;
click, t(32)= 8.57, p, .001, Cohen’s d= 1.49; and the slopes for
the reference set size were again significantly larger than those for
the click set size (paired t test, two-tailed), t(32)= 12.54,
p, .001, Cohen’s d= 2.18. For Experiment 2b, the linear regres-
sion (min R2= .0035, max R2= 1.00) yielded a mean slope signifi-
cantly greater than zero (one-sample t test, one-tailed), t(32)= 5.31,
p, .001, Cohen’s d= 0.92. Finally, an ANOVA directly comparing
the eye-tracking and mouse-tracking experiments showed that in the
latter type of task, observers dwelled overall longer before each tran-
sition (Experiment 1a vs. 2a, F[1, 56]= 173.68, p, .001, ηp

2=
0.76; Experiment 1b vs. 2b, F[1, 56]= 37.87, p, .001, ηp

2=
0.40), and dwell time increased more per set size (Experiment 1a
vs. 2a, F[14, 784]= 97.11, p, .001, ηp

2= 0.63; Experiment 1b
vs. 2b, F[2, 112]= 14.65, p, .001, ηp

2= 0.21).
Thus, as was the case for the other dependent measures, for

dwell time too we observe linear effects for both reference and
click set sizes, and a stronger influence of the reference set size.
Importantly, while the number of transitions decreased for the
mouse experiment compared with the eye experiment, the dwell
time increased. This is suggestive of a trade-off between dwelling
and transitioning across tasks.
To find further support for such trade-offs, we also assessed the

relationship between dwelling and transitioning behavior within
each of the experiments. For this purpose, we applied a linear
mixed effects (LME) model to the individual trial data for each
of the set size combinations, to see if longer dwell times indeed
predicted fewer transitions. The model structure we adopted was
#transitions� 1+ dwell_time+ (1+ dwell_time|Participant), thus
treating number of transitions as the dependent variable, dwell
time as the predictor and participant as a random factor for which
both intercept and slope were estimated. For each condition, data
were z-scored within each participant before being fed into the
model. Figure 6 shows the LME slope results, reflecting the relation-
ship between dwell time and number of transitions for each of the set
size combinations of Experiments 1 and 2. Negative slopes indicate
a trade-off where longer dwell times indeed go with fewer transi-
tions. Such trade-offs were not universally present for the eye-
tracking task (Experiments 1a and 1b), as is shown in Figure 6a.
At the smallest set sizes, there was no significant relationship
between dwell time and number of transitions. The intermediate

set sizes did show a negative slope, indicative of a trade-off.
However, at the larger set sizes, the relationship turned positive indi-
cating that a larger number of transitions alsowent together with lon-
ger dwell times. This pattern is somewhat difficult to interpret, and
may mean that people changed tactics when reference set sizes got
quite large. The pattern is clearer for the mouse task (Experiments
2a and 2b), as here virtually all slopes were negative (and reliably
so from set size [1, 12] onwards) from Figure 6b. Thus, in the
mouse task, there was a more pronounced trade-off between dwell-
ing and transitioning consistent with changing sampling/memoriz-
ing strategies, in this case from trial to trial. Detailed statistics of
the LME results are presented in Appendix Table C1 in the online
supplemental materials.

An additional question we can then ask here is what is most ben-
eficial for search: dwelling or transitioning? We therefore repeated
the analyses but now, instead of the number of transitions, we
tried to predict RTs from dwell time. The results are shown in detail
in Appendix Table C2 in the online supplemental materials. Across
the board, the relation between dwell time and RTs was positive,
suggesting that investing more in memorizing is not necessarily
the most effective way of completing the task.

Estimating Memory Usage Using Simulation Models

The observed differential trade-offs between dwelling and transi-
tioning for the eye and mouse experiments indicate different memo-
rizing strategies. Observers transition more between the two displays
in the eye movement version of the experiment, suggesting that they
rely more on the sensory input, and less on memory, while the
reverse appears true for the mouse version. But how many objects
did observers then actually store in memory when switching from
one display to the other? The slope values of the number of transi-
tions can already help us exclude two extreme search strategies, a
strategy where people first fully learn the reference display by
heart before they search through the click display, and the strategy
where they limit memory to one object at a time. Under the first strat-
egy, the total number of transitions would be constant regardless of
the reference set size. This was clearly not the case. Under the sec-
ond strategy, observers would visit only one object in reference dis-
play at a time before transitioning and search the other display for the
single target, so the average number of transitions from the reference
display would be the same as the expected number of visited objects
in the reference display, which is (SSref+ 1)/2, and the total number
of transitions would then be SSref+ 1 (given that observers also tran-
sition back from the click display). As shown in Figure 4, none of
these predictions held, whether for the eye-tracking or the mouse-
tracking version. To provide a more precise estimate of memory
usage in the two versions of experiments, we built two simulation
models which were highly similar, except for some task-specific
adaptations. The core model is illustrated in Figure 7, while
Appendix D in the online supplemental materials contains pseudo-
code. The model seeks to predict the number of transitions observers
make, by varying the amount of information carried from one dis-
play to the next (i.e., memory usage). To this end, when the
model scans one display, it randomly selects a subset of objects as
visited (i.e., “seen”) objects, referred to as n. From this subset of n
visited objects, a further subset of objects, referred to as m, are
then selected, which are being memorized across the transition to
the other display. Thus, the model can only remember (a selection
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of) what it has seen. The model then transitions to the other display,
where it again selects a subset of visited objects. If both members of
the pair are present in the selected subsets (one in memory, one in the
currently seen set), the pair is found. If no pair is present, the model
will update its memory with a subset of the visited objects in the cur-
rently viewed display, and then transition back to the other display.
This process is repeated until the pair is found. Note the model is
allowed to carry information in both directions, from the left (refer-
ence) display to the right (click) display and vice versa, from the
right back to the left. As we tried—by design as well as instruc-
tion—to make participants treat the left display as a reference (or
memory) display and the right display as the click (or search) dis-
play, we decided to model the amount of information being gathered
from the left and right displays with two separate variables, referred
to asmL andmR, wherem stands for memory usage. Howmuch from
both displays will be remembered will dynamically depend from
transition to transition on how much from the current and the previ-
ous displays is remembered, and will thus be a combination of mL

and mR. We then take the maximum total number of objects that is
being remembered on a particular trial as the estimate of the actual
total memory usage that is being recruited for that trial, and we
will refer to it as mtotal.

2 Thus, for each simulated trial, memory
usage is defined as the average number of memorized objects before
each transition while the total memory usage is defined as the max-
imum number of objects ever simultaneously held in memory at any
point during a trial.

The basic model makes a number of additional assumptions. First,
it assumes no memory beyond one transition. That is, when the
model transitions back to the left display, what the model selects
as potential targets for subsequent scanning will not be influenced
by what the model has seen earlier in a previous visit to that display,
and the same is the case for the right display. This is commensurate
with earlier work indicating that the effects of attention have no
cumulative effect on visual perception (Horowitz & Wolfe, 1998,
2001; Wolfe et al., 2000). As shown in Appendices E1 and F1 in
the online supplemental materials, the number of fixations or mouse-
visits on the reference display before each transition decreased with
the first one or two passings on the reference display, consistent with
the possibility of some initial learning of the objects across transi-
tions. However, beyond these initial rounds, the number of fixa-
tions/visits remained stable, suggesting little further memory
build-up. There was also no sign of a learning effect for the click dis-
play. We therefore decided to keep our basis model simple, with no
memory beyond one transition. For the mouse-tracking experiments,
this simple model accounted for the data well. However, in the eye
movement version, we deviated from this assumption, as will be

Figure 6
Trade-off Between Dwelling and Transitioning

Note. (a) Data from Experiments 1a and 1b (eye tracking). (b) Data from Experiments 2a and 2b (mouse
tracking).

2 Note that due to the model dynamics, the average mtotal is not simply the
sum of the averagemL and averagemR, asmL andmR are dynamically chang-
ing with each transition. Instead mtotal is the maximum sum of mL and mR at
one specific moment within a trial.
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explained later. Second, when the model incidentally happens to
remember all the objects from one display, it will transition to the
other display and then always exhaustively search the other display
for the match. This makes sense because when it remembers every-
thing, there is no reason to return to the previous display and sample
more. This rule especially helps mimic the human data for low ref-
erence set sizes, especially set size 1, when observers are highly
likely to have perfect memory. The same rule has little impact for
larger set sizes as the model is then unlikely to remember all the
objects anyway.

Modeling the Mouse-Tracking Data

We start with data from the mouse-tracking experiments,
because for those experiments we have exact data on how many
objects were visited in each display before each transition (variable
n)—as each object would only become visible upon a mouse-visit.
Appendix E2 in the online supplemental materials shows the distri-
butions of the number of objects visited before each transition
for the two displays in the mouse experiments. Note that the
peak of the distribution generally appears at the corresponding
set size, consistent with the idea that participants had a tendency
to scan all the objects in one display before transitioning to
the other (which is not the same as memorizing all the objects).
The simulation model draws n directly and randomly from this
distribution (i.e., the actual data on a number of visits). A subset
from this draw, m, is then selected for memory. In the model
fitting, the memory usage variables mL and mR were not varied

directly though, as this would ignore random variation in capa-
city from moment to moment, and limit the precision of the
model to linearly increasing integer steps. To allow for random
fluctuations, as well as a nonlinear asymptotic increase in memory
usage, on each transition, the memory usage for each sampling of a
display was modeled as follows: mL,R=MIN(n, RAND(1, u)),
where n is the number of objects seen, and u is a free parameter
setting the upper memory boundary. Thus, memory usage was
constrained by the number of objects seen, and a momentary
memory limit as drawn from a uniform distribution with upper
bound u, whichever of the two was smallest. Note that u is
merely used to limit the memory capacity distribution here which
indirectly affects m, and should not be interpreted as directly
reflecting human memory capacity. This method of setting mem-
ory usage ensured a better fit than a simple linear function with
integer steps. The only free parameter in the model is then u. The
memory usage was thus set for each search cycle within a trial
for the left (mL) and the right (mR) displays separately. The maxi-
mum memory usage within a trial was then mtotal, which reflected
the maximum combination of mL and mR during any cycle within
the trial.

The model was then fitted to the cumulative distributions of
transitions in the human data. We fitted 10 runs using a grid search
method, with a thousand simulated trials for each run. Appendix E3
in the online supplemental materials shows the fit values for a range
of parameter (u) settings. Figure 8 shows the average of best-fit mod-
els from 10 runs together with the human data, and the resulting esti-
mates for mL, mR, and mtotal. We will return to these memory values

Figure 7
The Workflow of the Core Model
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later. For now, we conclude that the model fits the data quite
adequately.

Modeling the Eye-Tracking Data

To mimic transitioning behavior in the eye-tracking experiment,
the model required a number of adaptations. The first adaptation con-
cerned the number of objects “seen” by the model. Note that, except
at initial onset of a display, the objects were not covered, and thus
remained visible throughout the trial. As a consequence, while we
can track and count individual fixations, we cannot unequivocally
determine how many, and which, objects were “seen” within each
fixation. Fixations were not always clearly directed to an object, as
they could fall on empty space, but observers may also sample mul-
tiple objects within a single fixation, using extrafoveal vision.
Because we could not retrieve from the data how many objects
were really seen as such, we estimated this instead by adding a sec-
ond parameter to the model. This parameter, f, reflects the radius of
the functional viewing field, a circular area around fixation within
which objects were regarded as “seen” (cf. Hulleman & Olivers,
2017; Wolfe, 2021; Young & Hulleman, 2013). It was allowed to
vary between 3 and 15 dva. Thus, the larger f, the more objects
could be seen per fixation.
The second adaptation concerned the introduction of an inhibition

of return mechanism (Klein, 2000). Note that the basic model
assumed no memory beyond one transition. This accounted well
for the mouse data, where observers often chose to re-scan objects
when they returned to a display. However, we observed a consider-
ably weaker fit for the eye movement data. The reason is illustrated in

the example trial shown in Figure 2. While in the eye experiment
observers more often went back and forth between displays, they
did not do so randomly. Rather, there appeared to be some memory
of where one had already previously sampled. Especially at set size 2
(and to a lesser extent set size 3), observers realized that if it is not the
first object they picked, it must be the other. This implies some spa-
tial memory or strategy reflecting which objects can be safely
ignored. To mimic this aspect, we implemented a rudimentary inhi-
bition of return function which biased the model against memorizing
previously memorized objects (see Appendix D in the online supple-
mental materials for details).

Appendix F2 in the online supplemental materials illustrates the
mean squared errors of model fits from one run as a function of
the now two free parameters u (the parameter from which m is
derived), and f (the size of the functional viewing field; brighter col-
ors indicate a better fit, i.e., least squared error). This also immedi-
ately illustrates another problem: Multiple parameter combinations
generate relatively good fits, and different runs converged on some-
what different combinations. This happens because the effects of the
parameters u and f are not independent: How much is actually being
remembered (m) is determined by the minimum of howmuch can be
stored at that moment (as determined by u), and how much was seen
(as determined by f ). After all, what is not seen can also not be
remembered. Hence, the model may find a solution for a large f com-
bined with a small u, the other way around, or something in between.
Note though that the implication is the same: The amount of memory
that is eventually being used during the task (i.e.,m) is limited, either
by the momentary memory capacity itself, or by the number of
objects being encoded into that memory. We therefore solved this

Figure 8
The Average of Best-Fit Models From 10 Runs for Mouse-Tracking Data

Note. Black circles represent human data. Red circles represent simulated data. See the online article for the color version of this figure.

HOW DO PEOPLE FIND PAIRS? 11

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/xge0001390.supp
https://doi.org/10.1037/xge0001390.supp
https://doi.org/10.1037/xge0001390.supp


problem by simply averaging the obtained parameter values across
the 10 runs into a pooled estimate. Figure 9 shows the average of
best-fit models from 10 runs to the cumulative distributions of tran-
sitions in the human data, together with the estimates ofmL,mR, and
mtotal. Again, the fit appears very adequate. Appendix F3 in the
online supplemental materials shows the best model fit when no
inhibition of return is assumed for the eye data. While still capturing
the overall pattern, this model provides a visibly worse fit than the
model with inhibition of return for especially the reference set
sizes 2 and 3. Conversely, Appendix E4 in the online supplemental
materials shows the model fit for the mouse-tracking data, now with
inhibition of return included. Here too the fit is worse, again mainly
for set sizes 2 and 3. This provides another difference in memory
strategy between the two tasks.

Comparing Memory Usage in the Eye- and
Mouse-Tracking Experiments

Figure 10 shows the average estimated memory usage for both the
eye-tracking and the mouse-tracking versions of the experiment, as a
function of the reference set size and the click set size. Dashed lines
and dotted lines represent estimated memory usage for the left dis-
play and the right display, respectively, whereas solid lines show
the estimated total memory usage. A number of observations can
be made. First, the number of objects remembered increases with
the reference set size, with overall little to no additional effect of
the click set size. This suggests again that observers indeed primarily
treated the reference display as the memory display and the click dis-
play as the search display. Second, in the mouse-tracking version,

overall more information was being remembered from the left dis-
play than from the right display, which would be consistent with a
dominant “remember left, search right” strategy. However, in the
eye-tracking version, there was no such difference, as similar
amounts of information were carried back and forth between dis-
plays. Last but not least, in the eye-tracking experiments, total mem-
ory usage clearly plateaued with increasing set size, at a value close
to four items. In contrast, in the mouse-tracking version, memory
usage steadily grew with set size, with an average mtotal of more
than 14.5 for set size (20, 20; note that exact estimates may differ
slightly per simulation due to the random components). And
although the increase in memory usage with set sizes appears to
slow down a little for higher set sizes, there is no asymptote in
sight yet.

General Discussion

Compared with typical investigations of visual search tasks,
where the target would usually be explicitly defined, our pair search
task only defines the goal of finding a pair. The specific target on
each trial is determined by the search stimuli themselves, rather
than by instructions prior to search. In this type of task, observers
cannot be guided by a fixed target representation in memory. They
need to dynamically update representations of potential target candi-
dates based on the visual input during scanning. We were interested
in how observers coordinate scanning and memorizing in such a
task. To address this question, we conducted two versions of the
experiment (eye and mouse) in which observers searched in two
arrays for a pair of matching objects, one member of the pair in

Figure 9
The Average of Best-Fit Models From 10 Runs for Eye-Tracking Data

Note. Black circles represent human data. Red circles represent simulated data. See the online article for the color version of this figure.
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each array. Between the two versions, we varied the costs that came
with scanning the visual information, in order to assess if that
resulted in different memory strategies.
When looking at task performance (as reflected in manual RTs),

we observed all the set size effects were linear in both versions of
the task, though RTs were much more affected by the reference
set size than by the click set size when they were manipulated sep-
arately. The differential slopes for the reference and click sets sug-
gested that observers largely treated the left display as the source
of the “memory set” and the right display as the “visual set” as
those terms are defined in hybrid search (Wolfe, 2012). Wolfe
(2012) reported that RTs increased with the log of the memory
set size. However, we did not observe a logarithmic relationship
with the reference set size. This could suggest that the observers
did not adopt a strategy of storing all items from the reference set
in memory in the same way as they would perform a hybrid search.
Alternatively, the experiment may not have been sufficiently sensi-
tive to detect a log-linear memory search. Note that in the typical
hybrid search task, observers are first required to commit all of the
target items to memory before performing the visual search.
Hybrid search RTs therefore do not include the time participants
spent on memorizing objects. In our pair search task RTs do include
the time of encoding the items in memory, and this may well be a
strong linear effect, potentially masking any additional log-linear
effects.
Of most interest was the number of transitions between displays

and the dwell time spent in each display. First of all, these metrics
indicate that observers indeed regularly updated their memory dur-
ing the trial, as observers typically required multiple transitions
between displays, especially for the larger reference set sizes.
Second, these metrics suggest that observers approached the two
types of tasks with very different strategies. Participants relied
more on internal memorizing (fewer transitions and longer dwell
times) in the mouse-tracking experiments but more on external

sampling (more transitions and shorter dwell times) in the eye-
tracking experiments, suggesting a strategic trade-off between sam-
pling and memorizing across the two versions of experiments. This
was further confirmed by direct estimates of memory usage, as
derived from simulation models for each of the two tasks. The esti-
mated total memory usage plateaued at about four in the eye version
but grew to considerably higher values in the mouse version.

To summarize then, observers relied more on the outside stimuli
when scanning was easy, and relied more on their internal memory
when scanning was hard. The findings are consistent with the idea of
the “world as external memory,” as proposed by O’Regan (1992).
As he pointed out, even if we have the memory capacity, we may
not use it if the cost of simply reacquiring information from the exter-
nal world is low enough. This theory has been supported by several
earlier findings. For example, Ballard et al. (1995) used a block
copying task in which participants were required to copy a model
grid of blocks in another grid. It was found that participants sought
to minimize the use of memory at the expense of making more eye
movements between the model and the response grid, presumably
because the cost of memory was more expensive than the cost of
the eye movements. By further increasing the cost of acquiring infor-
mation (the distance between the model and the workspace), the
researchers found the strategy shifted in the direction of more mem-
ory use, showing that the cost of associated actions is an important
factor determining how memory will be used (see also Draschkow
et al., 2021). Such costs associated with additional actions may
reflect direct motor costs, where memory usage is traded off against
movements in terms of energy expenditure (Hayhoe & Matthis,
2018; Li et al., 2018), but may also reflect time costs (as larger or
more protracted actions need more time). Evidence for a time com-
ponent comes from a study that also used the block copying task, and
which found that increasing the delay to stimulus availability also led
to a shift from sampling (more eye movements from the model grid
to the response grid) to memorizing (longer dwell time on the model

Figure 10
Estimated Memory Usage in (a) the Eye-Tracking Experiments and (b) the Mouse-Tracking Experiments, as Derived From the Model
Simulations

Note. Estimated memory usage for the left display (dashed line) and the right display (dotted line) as well as estimated total memory usage (solid line) is
shown, as a function of set sizes. See the online article for the color version of this figure.

HOW DO PEOPLE FIND PAIRS? 13

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al
A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



grid; Somai et al., 2020). Though it is different in a number of
aspects, our current task bears a clear resemblance to the object-
copying paradigm, so it is encouraging to see that the same princi-
ples also hold for visual pair search.
It is interesting to note that estimated memory usage stayed within

a limit of four items in the eye-tracking experiments even when the
reference set size was much.4. In contrast, memory use grew with
set size to more than 14.5 items in the mouse version. As reported in
other typical laboratory experiments about memory capacity, the
capacity of short-term memory is limited to three or four objects
(Cowan, 2001; Luck &Vogel, 2013) while the capacity of long-term
memory can be massive (Brady et al., 2008; Standing, 1973). The
simulated results about memory usage suggest that participants
might have only relied on short-term memory in the eye-tracking
experiments while engaging long-term memory in the mouse exper-
iments. This conclusion is also supported by the differential memory
usage for the left and right displays. In the eye-tracking version, the
estimated usage was similar for both left and right sets, suggesting
that participants were continuously modifying the contents of work-
ing memory. In the mouse version, the estimated usage for the left,
reference display was larger overall than the usage for the right dis-
play, suggesting that participants were trying to adopt a strategy sim-
ilar to that used in a hybrid search (here “remember left, search
right”).
Our model assumes no accumulation of memory across multiple

scans of a display (i.e., it assumes no memory beyond one transition
between displays). One may question this assumption given that pre-
vious studies have demonstrated that the identities of distractors can
be incidentally remembered during visual search, as reflected in
shorter search RTs and fewer fixations after search displays are
repeated (Hout & Goldinger, 2010, 2012). We conducted a similar
analysis at a more fine-grained level which looked at the number
of scanning movements (eye or mouse) as a function of transition
number (see Appendices E1 and F1 in the online supplemental mate-
rials), but our results only showed a decreasing trend for a limited
number of cases, namely only for the reference display, only for
the higher set sizes (12–20), and only for the first one (in the
mouse version) or two (eye version) scans. Note further that scan-
ning an item is not necessarily the same as remembering the item
(as estimated by our memory usage parameter), and in that sense
scanning movements only provide an indirect measure of memory
usage. We therefore chose to keep the basic model simple and not
include any memory across multiple transitions, except for a rudi-
mentary inhibition of return mechanism in the simulation of the
eye movement version. The excellent fits generated by the model
indeed indicate that a more complex, cumulative memory mecha-
nism is not necessary. There may be good reasons for the cognitive
system to not accumulate object memories across multiple transi-
tions here. For example, when none of the remembered objects are
found during a search round, one might as well forget them as
they are less likely to be the target (whether that is truly the case
or not). Forgetting objects may thus prevent unnecessarily long
memory searches (cf. Wolfe, 2012). Note that the higher sampling
cost in the mouse experiments was associated with both the con-
strained visual accessibility of objects (no attentional guidance)
and the expensive motor cost of mouse movements (vs. eye move-
ments). Future studies could explicitly separate the influence from
the two factors by manipulating the amount of guidance available
or by making eye movements “costlier.”Another direction for future

research would be to explore the factors that make it easier or harder
to find a match. We speculate that the distance between pair mem-
bers, but also their relative saliency, complexity, or meaningfulness
may play a role. Finally, at a more general level, pair search is just
one example of a fuzzy or abstract search goal. It would be worth
studying other situations where the specific target is unknown,
such as “find a present that will go well with Susan’s new interior,”
or “who is not present at the meeting today.”

In conclusion, when performing a search that requires dynamic
exchanges of memory and perceptual input, observers adaptively
balance the costs of external sampling and internal memorizing in
accordance with task factors.
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