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Abstract

In most visual search experiments in the laboratory, objects are presented on an isolated, blank background. In most real world

search tasks, however, the background is continuous and can be complex. In six experiments, we examine the ability of the visual

system to separate search items from a background. The results support a view in which objects are separated from backgrounds in a

single, preattentive step. This is followed by a limited-capacity search process that selects objects that might be targets for further

identification. Identity information regarding the object�s status (target or distractor) then accumulates through a limited capacity
parallel process. The main effect of background complexity is to slow the accumulation of information in this later recognition stage.

It may be that recognition is slowed because background noise causes the preattentive segmentation stage to deliver less effectively

segmented objects to later stages. Only when backgrounds become nearly identical to the search objects does the background have

the effect of slowing item-by-item selection.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In a typical laboratory visual search task, observers

look for a target that may or may not be present among

some number of distractor items. The experimenter

typically measures the accuracy of response and the time

required to make the response (reaction time, or RT).

The number of items (the ‘‘set size’’) is often varied,

allowing an RT� set size function to be measured. The
slope of this function represents the added cost of each

additional item and can be seen as a measure of the

efficiency of the search. The intercept of this function

represents the ‘‘fixed costs’’ of processes such as those

involved in the motor response. A lot has been learned

from the large body of research using this paradigm

(reviewed in Driver & Frackiwiak, 2001; Sanders &

Donk, 1996; Wolfe, 1998a). However, the laboratory
task is necessarily artificial, leading to concerns about

ecological validity.

Real world search tasks are ubiquitous––from the
natural (Where is the raspberry on this bush?) to the

artificial (Is there a weapon in this carry-on bag?)––and

they differ from the laboratory versions in ways that

need to be investigated if we wish to generalize from the

lab to the world. This paper concentrates on one dif-

ference. In laboratory search tasks, items are usually

scattered over a uniform background. Very little work

needs to be done to identify the set of task-relevant
items. In real world searches, however, this is not the

case. Targets and potential distractors are spread over a

continuous and usually heterogeneous background.

Before an item can be identified as a target or rejected as

a distractor, it must first be distinguished from the

background. How is this done?

Broadly speaking, background complexity might

make search more difficult in four different ways. Our
framework for this discussion begins with the two-stage

conceptualization of search put forward by Neisser

(1967) and developed by Treisman and Gelade (1980).

They describe a ‘‘preattentive’’ stage of processing in

which the entire image is processed in parallel. As shown

in Fig. 1, when an observer searches for a target, it could

be that segmentation of the image into background and
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search items is a purely preattentive operation that takes

longer when the background is more complex (or nois-

ier).

The second stage in the classic two-stage account is a

limited capacity stage in which items or groups of items

are selected for further processing. If selection cannot
begin until the initial, preattentive clean-up is com-

pleted, then the addition of noise to the background

should only produce an additive increase in RT, as

cartooned in Fig. 2a. A second possibility is that the

initial ‘‘clean-up’’ of noisier backgrounds might be less

effective. In that case, the preattentive stage might per-

mit some pieces of the background to be selected as

search items as well as the ‘‘official’’ search items. These
items, misinterpreted as potential targets, would effec-

tively increase the set size (and, thus the mean RT) by a

constant amount. This would produce an additive in-

crease in RT which should be greater for target-absent

trials than for target-present trials, since a greater pro-

portion of the search items must be examined on target-

absent trials (Fig. 2b).

Explaining the third possibility requires some more

theoretical background. The two-stage architecture of

Neisser and Treisman has required some modification

over the years. For example, it has proven useful to

recognize that these are not independent stages; the

preattentive stage provides information that guides the
selection of items in the next stage (Egeth, Virzi, &

Garbart, 1984; Hoffman, 1979; Wolfe, 1994a; Wolfe,

Cave, & Franzel, 1989). It is also becoming clear that the

selection stage represents a bottleneck between a para-

llel, preattentive stage and another parallel, if limited-

capacity, recognition stage. Evidence from visual search

experiments indicates that items are selected for pro-

cessing at an average rate of one every 25–50 ms (re-
viewed in Wolfe, 1998b). However, no credible evidence

suggests that items can be processed to the point of

identification in that amount of time (e.g. Duncan,

Ward, & Shapiro, 1994; Raymond, Shapiro, & Arnell,

1992; Thorpe, Fize, & Marlot, 1996; VanRullen &

Thorpe, 2001; Ward, Duncan, & Shapiro, 1996). This

strongly suggests that the slope of the RT� set size
function reflects the rate at which items can be fed into
some sort of pipeline process (e.g. Harris, Shaw, & Al-

tom, 1985) where several hundred ms might be required

to accumulate enough information to identify an item as

target or distractor. Details of this argument can be

found elsewhere (Moore & Wolfe, 2001). A carwash can

serve as a metaphor. Cars go in and come out, say, once

a minute but it might take 5 min to fully ‘‘process’’ each

car. As a consequence, multiple items/cars can be in the
pipeline at the same time even if they are selected se-

quentially. Thus, this stage can be considered a limited-

capacity parallel stage. One way to model such a stage is

as a diffusion process (Palmer & McLean, 1995; Ratcliff,

1978) as illustrated in Fig. 3.

As each item is selected, information regarding it�s
status (target or distractor) begins accumulating. An

identification decision is made when that information
reaches the target threshold (upper bound in Fig. 3) or

the distractor threshold (lower bound). The rate of in-

formation accumulation can be described by the slope of

the function showing the information accumulating over

time (indicated by the tilted arrows in Fig. 3). A steeper

Fig. 2. A harder (noisier, more complex) background might either take

longer to separate from search items (2a) or might be imperfectly

separated (adding an average of N extra items to each trial). In either
case, the effect of background on RT would be additive with the effects

of set size. (a) Slower clean-up predicts the same effect on target-pre-

sent and target-absent trials. (b) Less effective clean-up predicts a

larger additive effect on target-absent trials.

Fig. 1. The effect of adding ‘‘noise’’ to the background could be to

lengthen the time it takes for preattentive mechanisms to separate the

candidate objects from the background.

Fig. 3. It could take longer for a parallel recognition device to do its

work if the initial segmentation of the image is less effective when there

is more noise in the background.
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slope indicates a more rapid progression from selection

to an identification decision. The effect of a noisier/more

complex background might be to reduce that rate of

accumulation. This is shown in the second half of Fig. 3

as a reduction in the slopes of the accumulation func-

tions. Since this reduction occurs in a parallel stage, the

effect of the background on RT would be additive with

the effect of set size; changing the slope of the accumu-
lation function does not change the slope of the RT� set
size function. Successful search ends when the target is

found. As long as items are selected at the same rate

from easy and hard displays, any extra RT cost would

reflect only the added time to make a decision about the

target item. The effects on target-absent trial RTs are a

more complex issue that will be taken up later in this

paper.
This slowed accumulation could result from a less

effective segmentation process. If, rather than adding

virtual items to the set size (the second possibility de-

scribed above), the segmentation process delivers up

candidate objects which carried with them some extra-

neous background information, such objects would take

more time and effort to recognize than ‘‘cleaner’’ ob-

jects. It is important to reiterate that this slowing of
recognition is assumed to be separate from any slowing

of item-by-item selection. We are assuming that atten-

tional selection is a bottleneck between initial parallel

processing of visual input that includes parallel seg-

mentation of the scene into component objects and a

subsequent, parallel recognition stage in which several

items can progress toward recognition at the same time.

The fourth possibility is that the background might
exert its effect on the selection stage. Perhaps it takes

longer to select each item because that item must be

more laboriously and individually separated from the

background as illustrated in Fig. 4. This would result in

an increase in slopes as shown in Fig. 5.

To summarize, then, there are three hypothetical

factors that could produce additive effects on search RT

as the background becomes noisier. (1) Preattentive
segmentation or ‘‘clean-up’’ could take longer, (2) seg-

mentation might be imperfect and might add extra ob-

jects to the search, (3) segmentation might be imperfect,

lengthening the time required to identify objects in a

later, parallel recognition stage. The fourth alternative is

that noise in the background could have its effect on the

time required to select individual items for further

identification. In this case, the slopes of the RT� set size
function should become steeper.

To test these hypotheses, we had observers search for

targets on a variety of backgrounds, embodying several

different operational definitions of background com-

plexity. In Experiments 1 and 2, complexity is varied by

changing the number of additional background objects

in a realistic scene. Complexity is manipulated by vary-

ing the similarity of background features to features of
the search items in Experiments 3 and 6. Similarity be-

tween background and search item spatial frequency

spectra is varied in Experiments 4 and 5. In general, we

found that more complex backgrounds reliably imposed

only additive RT costs. The slopes of RT� set size
functions were largely unaffected by an increase in

background complexity. This result is inconsistent with

that predicted by a slowed selection rate (Option 4: Figs.
4 and 5). That leaves three parallel-stage possibilities.

Two of these are preattentive: (1) a longer initial clean-

up stage (see Fig. 1); or (2) a less effective clean-up stage

that adds virtual items to the search set. The added

search items of the latter would be stimuli that the visual

system treats as candidate targets even if they were not

placed in the image by the experimenter. The remaining

possibility is that a less effective initial clean-up stage
causes slower accumulation of information in the iden-

tification stage that follows attentional selection (see

Fig. 5). The details of the additive RT cost further

constrain the possibilities. If the cost were due to a single

preattentive clean-up step, then that cost should be the

same on target-present and target-absent trials. It is not:

the cost is greater on target-absent trials. We will use

this fact to argue against a strong version of Parallel
Option 1. In Experiment 5, subjects distinguish between

the presence of one or two targets in a display. The re-

sults of this experiment can be used to distinguish be-

tween the remaining two sloppy clean-up hypotheses.

Does sloppy clean-up add extra candidates for atten-

tional selection (Option 2, Fig. 2b) or does it entail the
Fig. 4. The effect of background noise might be to lengthen the time

required for each deployment of attention.

Fig. 5. The effect of slowing the segmentation of each item in an at-

tentive stage of processing would be to increase the RT versus set size

slope for both target-absent and target-present trials.
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selection of less well-segmented objects, thus slowing

accumulation of information in the limited capacity

‘‘carwash’’ (Option 3, Fig. 3)? We will argue that the

data are best explained by assuming Option 3, that im-

perfect segmentation of more complex backgrounds

slows the rate at which information accumulates in a

limited-capacity, parallel stage following attentional se-

lection. Only when backgrounds truly camouflage items
do we observe effects on RT� set size slope (Experiment
6 and, perhaps, in Experiment 3).

These experiments comparing the effects of back-

grounds of different complexity are similar in their logic

to experiments from a number of labs in which the

search items were degraded, generally by superimposed

noise of some sort (e.g. Egeth & Dagenbach, 1991; Lo-

gan, 1975; Lu & Dosher, 1998; Mewhort, Johns, &
Coble, 1991; Pashler, 1984; Pashler & Badgio, 1985;

Swensson & Judy, 1981). For example, Becker and

Pashler (2001) placed a noise mask over their stimuli

and found that moderate amounts of noise produced an

additive change in RT while greater amounts of noise

increased the slope of the RT� set size function. These
masking experiments ask a somewhat different question

from the question asked here. The degraded stimulus
experiments can be seen as part of the larger project to

understand visual search in terms of signal-detection

theory (e.g. Eckstein, Thomas, Palmer, & Shimozaki,

1996; Graham, Kramer, & Haber, 1985; Kinchla, 1977;

Palmer, Verghese, & Pavel, 2000; Verghese, 2001). Many

standard search tasks involve discriminations that are

trivially easy if the observer is confronted with just a

single item (e.g. Is it red or green, a T or an L?). These
discriminations can be made more difficult by reducing

the difference between target attributes and distractor

attributes (e.g. Nagy & Sanchez, 1990, for color stimuli

or Foster & Ward, 1991a,b for orientation). Alterna-

tively, discriminations can be made difficult by adding

noise to the items as in the studies cited above. Once the

discriminability drops below some critical level, it takes

more time to decide if a given item is a target or a dis-
tractor and the slope of the RT� set size function in-
creases. Note that, in these masking experiments, there

is no particular problem in identifying the set of items.

The difficulty lies in discriminating target from distrac-

tors.

In our experiments, in contrast to the masking ex-

periments, the items are not degraded. Given a single

item, target versus distractor discriminability will be
very high. We are adding noise between the objects, in

the background. We are increasing the possibility that

attention will be allocated to a region where there are

no task relevant objects at all. Both masking and

background effects can co-occur in real search tasks.

Consider the problem of screening an X-ray image

for tumors (e.g. Kundel, 1991; Nodine, Krupinski, &

Kundel, 1993; Nodine, Kundel, Lauver, & Toto, 1996;

Samuel, Kundel, Nodine, & Toto, 1995; Swensson,

1980). The radiologist needs to determine the loci that

should be selected for attention. This is a problem of

segmenting candidate targets from the background im-

age. Only then can the radiologist determine if a specific

item is a tumor. The latter is a version of the signal

detection problem described above. Most prior work

has dealt with this second step. We are addressing the
first.

2. General methods

Our experimental strategy was the same across the six

experiments of this paper. We measured RT� set size
functions for a standard visual search task (search for a

T among L�s) and varied the background complexity.
All of the experiments described hereafter were pro-

grammed with Matlab 5.1 (MathWorks) using the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Stimuli were presented on a 21-in. Mitsubishi monitor

running at a refresh rate of 75 Hz, and controlled by a

Power Macintosh G4. Targets and distractors sub-

tended, on average, 1.5� of visual angle from a 50 cm

viewing distance (except Experiment 3). Background

images subtended up to 30� of visual angle. In each
experiment, subjects performed a standard visual search
task with target and distractors superimposed on a back-

ground of different levels of complexity. Targets were

present on 50% of trials. Observers were fully informed

about the identity of targets and distractors. Observers

were instructed to answer as rapidly and accurately as

possible and they were given feedback about their re-

sponse accuracy after each trial. All observers were be-

tween the ages of 18 and 50 and had vision of 20/25 or
better with correction as-needed. All participants passed

the Ishihara test for color blindness. They gave informed

consent and were paid $9 per hour for their participa-

tion. Departures from these general methods will be

noted as-needed.

3. Experiment 1: refrigerator magnets on messy desks

In Experiment 1, we varied the complexity of the
background by manipulating the ‘‘messiness’’ of a desk

scene (see Fig. 6). This experiment was intended to

simulate the common, realistic situation of a search for a

specific object (here, a refrigerator magnet) among

similar objects (other refrigerator magnets) lying on a

desk.

3.1. Method

Three background desks of different levels of com-

plexity were composed using the 3D scene synthesis

2988 J.M. Wolfe et al. / Vision Research 42 (2002) 2985–3004



software Home Designer 3.0 (from Data Becker, Inc.).

These backgrounds will be referred to as empty, neat,

and messy desks (see Fig. 6). Here, greater complexity

means a greater number of irrelevant objects on the desk

(with resulting increases in density and occlusion). Eight

rotated versions (every 45�) of the letter T (target) and
the letter L (distractors) were designed to look like
beveled magnets that you might put on a refrigerator

(see Fig. 7). Twelve participants performed 1080 exper-

imental trials preceded by 54 practice trials, searching

for the T among 4, 8, or 12 letters. A central fixation

cross was presented for 500 ms prior to each trial. The

desk background and search stimuli were displayed until

the observer responded.

3.2. Results

RTs less than 200 ms and greater than 4000 ms were
labeled as errors. Error rates averaged 3%, including the

out-of-range RT trials. Error rates did not differ signif-

icantly across conditions. Mean RTs for correct trials

are plotted against set size, for the three backgrounds, in

Fig. 8. The figure shows an additive RT effect of desk

complexity. There are substantial changes in mean RT

and only minor differences in slopes across the three

background desk conditions. Moreover, it is clear that
the effect of our complexity manipulations on mean RT

is greater for the target-absent trials than for the target-

present trials.

These impressions are supported by ANOVA. An

ANOVA combining target-present and target-absent

data reveals a significant interaction of target presence/

absence with background (F ð2; 22Þ ¼ 23:3, p < 0:0001),
reflecting the larger effect of background complexity on

target-absent trials� RTs. It is more informative to per-
form separate ANOVAs on the target-present and tar-
get-absent trials. Analysis of correct, target-present

trials reveals significant main effects of background

(F ð2; 22Þ ¼ 35:48, p < 0:0001) and set size (F ð2; 22Þ ¼
141:83, p < 0:0001) on mean RTs, but no differences
in the RT � set size slopes between conditions (i.e.,
background � set size interaction: F < 1). The same
pattern is seen with ANOVAs performed on correct

target-absent trials: a large effect of background com-
plexity on mean RTs, (F ð2; 22Þ ¼ 32:2, p < 0:0001), as
well as a significant set size effect (F ð2; 22Þ ¼ 145:6,
p < 0:0001), but no slope differences between conditions
(F ð4; 44Þ ¼ 1:6).

3.3. Discussion

The results of Experiment 1 show that observers

handled these backgrounds in a parallel manner, inde-

pendent of set size effects. There have been a variety of

previous studies involving visual search in approxima-
tions of ‘‘real’’ scenes (Biederman, Glass, & Stacy, 1973;

Carmody, Scanlon, & Dasaro, 1990; Kingsley, 1932;

Wolfe, 1994b). These include studies of eye movements

Fig. 6. Front view of the three desk backgrounds: (a) empty desks, (b) neat desk and (c) messy desk.

Fig. 7. This figure shows examples of the search task in the complex desk background condition. The beveled refrigerator magnet stimuli of Ex-

periment 1 are shown on the left and the Post-It� stimuli of Experiment 2 are shown on the right.
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in search (e.g. Ballard, Hayhoe, Pook, & Rao, 1997;

Kroll, 1992; Melcher, 2001; Melcher & Kowler, 2001;

Rayner & Pollatsek, 1992), as well as the current interest

in search for changes in scenes (Rensink, O�Regan, &
Clark, 1997; Simons & Levin, 1997). As a group, these

studies have shown that the patterns of results seen with
artificial search tasks can also be obtained with more

realistic stimuli. But despite these substantial gains in

ecological validity, the question of how a set of search

items is extracted from a continuous scene has remained

unanswered. Indeed, one of the difficulties with real

scenes as search displays has been the problem of de-

fining set size.

As mentioned above, the present laboratory task is
somewhat different from those that have preceeded it.

We may not know exactly how many items an observer

considers to be candidate targets for the search task.

However, as experimenters, we can control the number

of items that we have placed in the scene and we can

conclude that adding four magnet distractors to the

display adds four items to the set considered by the vi-

sual system (e.g. the difference between nominal set size
4 and 8). This allows us to use the slope of the RT� set
size function to estimate the cost of each additional item

even if the intercept of that function might be inflated by

the effects of what we, as experimenters, consider to be

the background.

Our search task can be seen as a form of ‘‘Guided

Search’’ (Wolfe, 1994a, 2001; Wolfe et al., 1989; Wolfe

& Gancarz, 1996). The Guided Search model builds on
the two-stage architecture of Neisser (1967) and Treis-

man and Gelade (1980). The two stages consist of a

‘‘preattentive’’ processing stage in which a limited

number of basic features (color, size, several depth cues,

etc.) can be extracted in parallel across the visual field

and an ‘‘attentive’’ stage in which individual items (or

perhaps groups of items) are selected for further analysis

by limited-capacity processes. Guided Search argues

that information from the preattentive stage guides the

deployment of attention in the second stage. The more

effective the guidance, the more efficient the search (see

also Egeth et al., 1984; Hoffman, 1979; Tsotsos et al.,

1995).

In Experiment 1, attention can be guided to the T�s
and L�s by their basic feature attributes (probably color,
size, and some still ill-defined form features). Within the

set of T�s and L�s, no further guidance is possible and
search probably proceeds in a serial, item-by-item

manner (Horowitz & Wolfe, 1998, 2001; Kwak,

Dagenbach, & Egeth, 1991; Wolfe, 1998a; Woodman &

Luck, 1999). The effect of background complexity was

shown to be additive with increasing set size. This argues
against any hypothesis that holds that rate of attentional

selection of items is slowed. Also, the additive effect is

larger for the target-absent trials. This fact argues

against the proposal that observers wait longer to start

searching when the background is more complex (Figs.

1 and 2). As discussed earlier, two accounts predict an

additive increase in RT that would be greater for target-

absent than for target-present trials. Those are the
‘‘less-effective clean-up’’ and the ‘‘slowed accumulation’’

accounts. In the next three experiments, we explore the

generality of the above result. Experiment 5 will distin-

guish between these two options.

4. Experiment 2: a messy desk with Post-It� notes

The primary goal of Experiment 2 was to replicate
Experiment 1 with stimuli presenting a slightly different

segmentation challenge for the visual system. In this

experiment, the T�s and L�s were drawn on pieces of
paper resembling Post-It� notes scattered across the

desk backgrounds used in the previous experiment (see

Fig. 7b). These Post-It� stimuli added right angle cor-

ners similar to the books and journals found as objects

in the background. This similarity might be expected to
make the search task more difficult. On the other hand,

the T�s and L�s were now placed on locally blank

backgrounds, which might be expected to improve per-

formance. Methods were otherwise identical to those of

Experiment 1. Twelve observers participated in this

study.

4.1. Results and discussion

RTs less than 200 ms and greater than 4000 ms were

coded as errors. Error rates averaged 3.7% including the

out-of-range RT trials. These rates did not significantly
differ across conditions. Mean RTs for correct trials are

plotted against set size, for the three backgrounds, in

Fig. 9. The overall pattern of results is similar to the

Fig. 8. RT� set size functions for the three background ‘‘desks’’ of
Experiment 1. ( ) Empty-present, ( ) empty-absent, ( ) neat-

present, ( ) neat-absent, ( ) messy-present, ( ) messy-absent.

2990 J.M. Wolfe et al. / Vision Research 42 (2002) 2985–3004



pattern of results in Experiment 1. The primary effect
of background complexity appears to be an additive

increase in RT with a substantially larger effect on tar-

get-absent trial RTs. There are large main effects of

background and set size in the target-present data

(F ð2; 22Þ ¼ 79:52, p < 0:0001 and F ð2; 22Þ ¼ 118:83,
p < 0:0001, respectively). However, in contrast to Exper-
iment 1, Experiment 2 shows a statistically reliable in-

teraction of background and set size (F ð2; 22Þ ¼ 3:75,
p < 0:02). Slopes are slightly shallower with an empty
desk background than with a messy desk background.

The same pattern of results was observed for the target-

absent trials sets (Main effects: background F ð2; 22Þ ¼
88, p < 0:0001, set size F ð2; 22Þ ¼ 103, p < 0:0001;
Interaction: F ð4; 44Þ ¼ 7:76, p < 0:0001).
The increases in slope with background complexity

may indicate observers� decreased ability to discriminate
targets from distractors. Since the backgrounds remain

the same across the two experiments, it is the nature of

the search items that must make the difference. A likely

candidate is the structure of those items. In Experiment

1, the T�s and L�s are objects in their own right. In Ex-
periment 2, the squares of yellow paper are the objects

and the letters might be seen as surface markings on

those objects; i.e., parts of a larger whole. Part structure
is known to have an effect on search (Bilsky & Wolfe,

1995; Enns & Kingstone, 1995; Humphreys, Cinel,

Wolfe, Olson, & Klempen, 2000; Wolfe, Friedman-Hill,

& Bilsky, 1994; Xu & Singh, in press) with properties of

the whole object usually being more accessible than

properties of the part (Navon, 1977). Either this, or

some other factor appears to be modestly slowing the

attentive stage in its effort to select each potential target.

As a consequence, slopes increase modestly. The next

experiments move away from naturalistic stimuli in an

effort to isolate factors that might hinder the segmen-

tation of scenes into a set of search items and a back-

ground to be ignored.

5. Experiment 3: ‘‘Brick Wall’’ backgrounds––effects of

overt features

With natural stimuli like those in the first two ex-

periments, it is difficult to know how to manipulate the

similarity of search items and background. In Experi-

ment 3, this issue was addressed by making the back-

grounds out of the same picture elements as the search

items (T�s among L�s). We manipulated the type of
junctions and the local terminators in the backgrounds.

Six of the eight backgrounds are shown in Fig. 10.
The background of Fig. 10a contains T-junctions but

no line terminators. Fig. 10b contains terminators but

no actual T-junctions. Fig. 10c contains both. Fig. 10d

contains X-junctions but no terminators, Fig. 10e con-

tains terminators but no actual X-junctions, and Fig. 10f

contains both. In addition, two control backgrounds

were used: a blank background and a background

containing only the horizontal lines of the backgrounds
shown in Fig. 10. Note that the overall complexity of the

wall backgrounds is about the same in all conditions

except for the controls. The total amount of background

contour and the number of ‘‘cells’’ in which to place a T

or L remains constant. Only the junctions and termi-

nators change.

5.1. Method

Target letter T and distractor letters L were presented

in one of the four cardinal orientations. They subtended

2:5�� 2:5� of visual angle. Set sizes were 3, 6 and 9. The
backgrounds were composed of a 4� 4 grid that

Fig. 9. RT� set size functions for the three background desks of
Experiment 2. In this experiment, there is a large main effect of

background complexity on mean RT and a reliable effect on the slope

of the RT� set size functions. ( ) Empty-present, ( ) empty-

absent, ( ) neat-present, ( ) neat-absent, ( ) messy-present,

( ) messy-absent.

Fig. 10. Six of the eight backgrounds used in Experiment 3.
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subtended 19�� 19� of visual angle. Search stimuli were
randomly assigned to the 16 locations of the grid.

On each trial, a fixation cross appeared and was

followed, after 200 ms, by one of the backgrounds

containing search items. This display remained visible

until the observer made a response regarding the pres-

ence of a T. Participants performed 96 practice trials,

followed by 2400 experimental trials (two sessions of
1200 trials). Background, set size, and target presence/

absence were all randomized within the same experi-

mental block. Subjects were told to respond as quickly

and accurately as possible and they were given feedback

about their accuracy. Thirteen observers were tested in

all the conditions of this experiment.

5.2. Ranking control experiment

To assess the subjective complexity of the back-

grounds used in this experiment, we asked two separate

groups of observers to rank order paper copies of the

stimuli according to perceived visual complexity. Spe-

cifically, one group was asked to ‘‘order the pictures

according to their complexity’’. The other was asked

‘‘How hard do you think it would be to find a T on this
background?’’ Observers responded by physically lining

up the images from least to most complex.

5.3. Results

Results are shown in Table 1. Complexity ratings

shown in the table were obtained from the ranking
control experiment by assigning the value ‘‘1’’ to the

image rated least complex by an observer, ‘‘2’’ to the

next and so on up to 8. These values were then averaged

across observers and rescaled from 0 to 1. Since this is

an ordinal scale, these averages should be treated with

caution.

The data were analyzed for effects of ‘‘junction’’

(‘‘X’’, ‘‘T’’, or ‘‘none’’) and of terminators (‘‘present’’ or

‘‘absent’’) on RT and RT� set size slope. Inspection of
Fig. 11 suggests that, as with Experiments 1 and 2, the

main effect of background complexity is primarily an
additive one on mean RT. Again, the slope, or rate of

the search, did not appear to vary with backgrounds,

indicating that the background junctions and termina-

tors did not alter search efficiency. Moreover, it is clear

that the largest impact on mean RTs comes from the

presence of local terminators while the nature of back-

ground intersections (X or T) has a more modest effect,

largely limited to the conditions without line termina-
tors. These impressions are borne out by statistical

analysis.

Looking first at the slope data, Fig. 11 shows that

there are only modest differences in slopes, with some

tendency for steeper slopes with terminators present and

with junctions. An ANOVA on target-present slope data

bears out the impression that these are not large effects.

There is no significant effect on slopes of terminator
presence/absence (F ð1; 12Þ ¼ 2:9, p ¼ 0:11) or junction
(F ð2; 24Þ ¼ 2:1, p ¼ 0:14), or their interaction (F ð1;
12Þ ¼ 0:011, p ¼ 0:99). In the target-absent slope data,
there is a significant effect of junction (F ð2; 24Þ ¼ 8:6,
p ¼ 0:0015). The presence of X-junctions seems to make
subjects a bit more cautious about giving up on a search.

There is no significant effect on slope of terminator

presence/absence (F ð1; 12Þ ¼ 1:5, p ¼ 0:25) or an inter-
action between terminator presence/absence and junc-

tion (F ð1; 12Þ ¼ 2:4, p ¼ 0:11).

Table 1

Data for Experiment 3

Condition Perceived com-

plexity ratings

Ease of search

ratings

Slope (ms/item) Mean RT

(s.e.m.)

Intercept (ms) Error (%)

Target present

1. T-junctions w/teminators 0.82 0.89 24.3 637 (36) 491 5.94

2. T-junctions no terminators 0.65 0.74 21.8 596 (34) 465 3.5

3. X-junctions w/teminators 0.61 0.53 21 628 (38) 501 5.49

4. X-junctions no terminators 0.36 0.29 17.5 587 (33) 482 4.12

5. Terminators with broken T-junctions 0.58 0.75 21 664 (42) 538 5.48

6. Terminators with broken X-junctions 0.35 0.65 18.3 618 (35) 508 5.70

7. Control horizontal lines 0.13 0.14 16.2 580 (30) 482 4.98

8. Control blank field 0 0 17.5 561 (29) 456 3.64

Target absent

1. T-junctions w/teminators 0.82 0.89 45.7 815 (65) 541 2.43

2. T-junctions no terminators 0.65 0.74 48.2 763 (58) 474 2.29

3. X-junctions w/teminators 0.61 0.53 47.5 794 (63) 509 1.59

4. X-junctions no terminators 0.36 0.29 39.7 702 (49) 467 1.48

5. Terminators with broken T-junctions 0.58 0.75 45.6 888 (81) 615 1.99

6. Terminators with broken X-junctions 0.35 0.65 41.7 767 (56) 517 2.5

7. Control horizontal lines 0.13 0.14 38.8 698 (50) 465 1.97

8. Control blank field 0 0 36.2 672 (42) 455 2.08

Ratings are rescaled subjective ratings of the stimulus complexity (see text for details of the two versions). Other columns are self-explanatory.
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Turning to the mean RT data, in a combined ANOVA,
the interaction of background and target presence/

absence is significant (for the terminator variable:

F ð1; 12Þ ¼ 10:5, p < 0:01; for the junction variable:

F ð2; 24Þ ¼ 8:1, p < 0:01) reflecting the larger effect of
background on target-absent RTs. Again, it is more

informative to perform separate ANOVAs for target-

present and target-absent data. Here, we see a large

effect of terminator presence/absence on RT in the tar-
get-present data (F ð1; 12Þ ¼ 65:0, p < 0:0001). The effect
of junction does not quite reach the 5% significance level

(F ð2; 24Þ ¼ 2:7, p ¼ 0:08), but the interaction of termi-
nator presence/absence and junction does (F ð2; 24Þ ¼
5:1, p ¼ 0:01).
The effect of set size on mean RT is unsurprisingly

significant (F ð2; 24Þ ¼ 51:6, p < 0:0001). The small slope
effects are reflected in modestly significant interactions
of terminator presence/absence and set size (p ¼ 0:05)
and terminator presence/absence, junction, and set size

(p ¼ 0:03). The target-absent data are comparable to the
target-present data described above. All of the main

effects are highly significant (all p < 0:0001). The inter-
action of terminator presence/absence and junction is

also significant (p < 0:0001). Of the interactions with set
size, reflecting effects on the slope, only the set size/X-

junction interaction is modestly significant (p ¼ 0:04).
RTs less than 200 ms and greater than 4000 ms were

labeled as errors. Error rates averaged 3.5%, including

the out-of-range RTs. An ANOVA showed that errors
did not differ across junction types, but were reliably, if

only slightly, higher for backgrounds containing termi-

nators (3.9%) than those without terminators (3%),

(F ð2; 24Þ ¼ 10:2, p < 0:01).
Turning to the subjective rating tasks, subjects have a

reasonably accurate notion of the relative effects of the

backgrounds. When asked about the perceived com-

plexity of the images, average subject rankings have a
Spearman rank correlation of 0.71 with the means of the

RT data. When asked the more directed question about

the difficulty of finding a ‘‘T’’ on a specific background,

the correlation increases to 0.88. In agreement with the

results, observers judged that the general complexity of

the image increased with the presence of local termi-

nators. The two sets of rankings are strongly related to

each other (Spearman�s q ¼ 0:83). Note that the corre-
lations of rankings and RTs are correlations between the

average data from two different groups of subjects. One

group performed complexity ratings. Another group

performed the search task.

Interestingly, even though the effects of background

on slope are marginal at best, perceived complexity and

perceived difficulty are strongly related to the slope

(Spearman rank correlation of 0.92 and 0.88, respec-
tively). This suggests that there might be a real effect of

background on slope and that subjects are introspec-

tively sensitive to it. Is it possible that the main effect of

background characteristics on RT which we observed is

in fact due to a real effect on the slope? If the slope in-

creases by X ms per item and there are N search items,
then mean RT will increase by XN ms on average. The
resulting change in mean RT might be statistically reli-
able while the slope change was not, because slope

measurements are inherently less sensitive than mea-

surements of RT. This seems unlikely. Analysis of the

intercept data (based on the same number of data points

as the slope data) reveals a powerful effect of terminator

presence/absence (F ð1; 12Þ ¼ 39:12, p < 0:0001), and an
interaction of junction type with terminator presence/

absence (F ð2; 24Þ ¼ 4:15, p < 0:05). There is also a
strong trend towards an interaction between target

presence/absence and terminator presence/absence (F ð1;
12Þ ¼ 4:74, p ¼ 0:05). As with the mean RT, the effects
of the background are stronger on target-absent data, a

separate analysis of target-present data reveals only a

powerful effect of termintor presence/absence (F ð1;12Þ¼
93:58, p<0:0001). However, the target-absent data yield
a significant main effect of junctions (F ð1;12Þ¼17:98,

Fig. 11. Results for Experiment 3. Note that the scale for target-absent

trials is double that for target-present trials. Term: ( ) T–junction;

( ) X–junction; ( ) no junctions. No term: ( ) T–junction;

( ) X–junction; ( ) no junctions.
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p<0:005) and a junction by terminator presence/absence
interaction (F ð2;24Þ¼4:90, p<0:05). Thus, the back-
ground effects we observe on mean RT seem to be driven

primarily by statistically reliable changes to the inter-

cept of the RT�set size function, rather than by sub-
tle changes in slope ‘‘leaking’’ into the mean RT

measure.

5.4. Discussion

As in the previous experiments, these results show

that the main effect of background is an additive effect

on mean RT. Of course, we cannot conclude that there
is no effect at all on search rate. Given that perceived

difficulty and perceived complexity both correlate

strongly with the RT� set size slope, it is likely that
there is in fact a subtle change to the slopes which we

could not detect statistically. The slope effect may be

relatively weak here because the backgrounds do not

differ sufficiently to produce a statistically reliable effect.

The issue of slope effects will be revisited in Experiment
6, where we are able to induce a detectable change in

search rate. Neverthless, the fundamental result of this

experiment is that the additive effects of these back-

grounds on mean RT are much more powerful than any

effects on mean RT� set size slope. Also, line termina-
tors have a more substantial effect on RT than inter-

sections.

These additive effects implicate parallel processes ei-
ther before or after item-by-item selection. As with the

desk scene experiments, it is possible to entertain several

accounts of the added time required with more complex

backgrounds. It could be that it simply takes longer

to preattentively separate items from a complex back-

ground. However, as discussed before, the larger effect

of background complexity on target-absent RTs argues

against a fixed, preattentive waiting period that gets
longer as backgrounds become more complex. That

leaves two other potential sources of the additive effect

on mean RT with increasing set size. It could be that

each complex background adds some number of can-

didate items to the set of search items––increasing each

set size by a constant amount. Alternatively, it could be

that the presence of the background makes it harder to

accumulate the information needed to identify each
item, especially when there are features such as line

terminators in the background (cf. ‘‘crowding effects’’

Intriligator & Cavanagh, 2001; Toet & Levi, 1992).

Subsequent experiments, notably Experiment 5, seek to

differentiate between these accounts.

6. Experiment 4: the role of spatial frequency

In the first three experiments, the primary effect of the

background was an additive effect on RT rather than a

change in the slope of RT � set size functions. These
experiments (especially, Experiment 3) used backgrounds

that contained figural elements that could be confused

with search items. Experiment 4 introduces a different

sort of background complexity. Here the search items

and the background share common spatial frequency

content. It has been shown that stimuli with similar

frequency spectra interfere with each other (e.g. Blake &
Holopigian, 1985; Regan, 1985). One could imagine that

a T or an L on a background of the same component

frequencies would be harder to segment and might in-

crease the slope of an RT� set size function in visual
search.

6.1. Method

6.1.1. Stimuli

This experiment used the same T versus L search as

used in the previous experiments. To create the back-

grounds, the Fourier transform was computed for a

black letter T of size 64� 64 pixels, placed in a white
image of size 1024� 1024 pixels. We randomized the
phase spectrum, keeping the amplitude spectrum intact.

By simply rescaling this background spectrum, back-

ground textures were created with spectra of different
ratios to the target ratio (1:8, 1:2, 1:1, 2:1, 8:1). Portions

of the textures are shown in Fig. 12. All the textures had

a gaussian distribution of gray levels (0–256), centered

on 128.

Search items were T�s (target) and L�s (distractors)
that subtended 1:5�� 1:5� of visual angle. Items could
be presented in any of four orientations (0�, 90�, 180�, or
270�). Search items of two contrast levels were tested in
separate blocks. Measured against the average lumi-

nance of the background, the contrast of the high con-

trast T�s and L�s was 75% and the contrast of the low
contrast letters was 23%. Examples of search displays

are shown in Fig. 13.

6.1.2. Subjects

Twenty-two observers participated in the study, 11

participants per contrast group (low versus high).

6.1.3. Procedure

Set sizes were 1, 4, 7 and 10, and the experimental

procedures of the search task were identical to those of

the previous experiments. Different groups of subjects

participated in the high contrast and low contrast con-

ditions. Each background was paired with each set size

to produce 56 target-present and 56 target-absent trials.

Background, set size, and target presence/absence were
randomly distributed across trials. There were a total of

2240 trials per contrast condition, split into four blocks

with rest periods in between.
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6.2. Results

Two subjects (one per group) were discarded from the

analysis due to high error rates (>15%). Error rates
otherwise averaged 3.7% and 4.9%, including out-of-

range RT trials (RT < 200 ms and RT > 7000 ms), for
the high contrast and low contrast groups, respectively.

Table 2 shows the average RT� set size slopes in ms/
item for the target-present trials. Fig. 14 shows the mean
RT as a function of the ratio of background to search

item spatial frequency. As can be seen, the background

had no effect on the high contrast letters. Accordingly,

Fig. 15 shows only the RT� set size functions for the
low contrast letters.

Visual examination of the data suggests that, as in the

previous experiments, the important effects of back-

ground are only seen in mean RT measures and not in

RT� set size slope measures. This is borne out by sta-
tistical analysis. An ANOVA performed on the target-

present trials, shows a clear effect of the background on

mean RT (F ð4; 72Þ ¼ 51:67, p < 0:0001). The interac-
tion of background with set size, which would reflect a

slope effect, is not significant (F ð12; 216Þ ¼ 1:34, p ¼
19:7), nor is the triple interaction of background�
set size� item contrast (F � 1).

Fig. 12. Portions of the five background textures used in Experiment 4: from left to right, the background to target frequency ratios are 1:8 (coarse),

1:2, 1:1, 2:1, and 8:1 (fine).

Fig. 13. Examples of low contrast items and high contrast items superimposed on a 1:1 background texture.

Fig. 14. Mean RTs as a function of log ratio of spatial frequencies

between background and search items (coarser background on the

left). ( ) High-present; ( ) high-absent, ( ) low-present, ( )

low-absent.

Table 2

Slope in ms/item as a function of frequency ratio between background

and search items (1:8 ¼ coarse, 8:1 ¼ fine) for the target-present trials
of Experiment 4

Frequency ratio High contrast Low contrast

1:8 34 64

1:2 40 58

1:1 40 60

2:1 41 70

8:1 39 74
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Unsurprisingly, there are significant main effects of
set size (F ð3; 54Þ ¼ 255:93, p < 0:0001) and item con-

trast (F ð1; 18Þ ¼ 27:33, p < 0:0001) on RT as well as an
interaction of background and item contrast (F ð4; 72Þ ¼
30:88, p < 0:0001) that reflects the fact that background
has an effect only on the low contrast items. The high

contrast items are uniformly easy to segment from the

background.

An ANOVA including target-present and target-absent
trials for the low contrast letters reveals a significant

interaction of background with target presence/absence

(F ð4; 36Þ ¼ 27:6, p < 0:0001). This reflects the larger
effect of background on the target-absent trials as seen

in the preceding experiments.

Note that the slope effect, even if it were reliable, runs

opposite to the RT effect. The largest slope is found with

the low-contrast 8:1 ratio of background to search items.
Yet, this is the second fastest background condition. If

the 1:1 ratio produced the same slope as the 8:1, the mean

RT difference would be greater than what is seen here.

The slight reduction in slope in the 1:1 condition prob-

ably reflects a small speed-accuracy tradeoff as subjects

abandon a few of the longest searches.

6.3. Discussion

Variation in the spatial frequency content of the
background produces a tuning curve function (Fig. 14)

reminiscent of the curves produced in detection experi-

ments when a target of one spatial frequency is masked

by another (e.g. Legge & Foley, 1980). In our case,

target and distractors are ‘‘camouflaged’’ within the

background. Note that, in this case, the ‘‘mask’’ is the

background and is not superimposed on the target item.

As with the previous experiments, these data argue

against the hypothesis that the background exerts its

primary effect at the selection stage (Figs. 3 and 4).

These data can also be used to argue against the hy-
pothesis that it takes longer to segment items from

harder/noisier backgrounds and that search is delayed

until the segmentation process is complete (Figs. 1 and

2). This is most obvious if we consider the result for a set

size of 1. In this case, there is just a single ‘‘real’’ item in

the display. All the observer needs to do is to identify the

item as either a ‘‘T’’ or an ‘‘L’’. Relative to the coarsest

(1:8) background, it takes about 500 ms longer to con-
firm that the item is a ‘‘T’’ with the 1:1 background.

However, it takes nearly 1000 ms longer to confirm that

the item is an ‘‘L’’ with the same 1:1 background! This is

very hard to explain if the preattentive processes are

presenting the limited-capacity stage with a single item.

Why should it take 500 ms longer to deliver an ‘‘L’’ to

the selection stage? Moreover, the putative delay is so

long that it should be detectable by inspection of the RT
distributions, which should appear to be shifted no-

ticeably to longer RTs as background spatial frequency

approaches that of the search item.

Fig. 16 shows that this is not the case. These data are

still consistent with the hypothesis that a sloppy preat-

tentive stage could add extra virtual items (about 8) to

the one ‘‘official’’ item when the background frequency

matched that of the target and distractors. If the effec-
tive set size is nine, then it would be a standard result to

find that it takes longer to determine that none of these

nine possible items are ‘‘Ts’’ than it does to confirm that

one of those items is a ‘‘T’’. The data are also consistent

Fig. 16. RT distributions for two backgrounds and a set size of 1.

Note that that the distribution of the similar (1:1) background RTs

(solid black) does not look like the dissimilar (1:8) RT distribution

shifted by 500 ms (dashed line) as predicted by Option 1.

Fig. 15. RT� set size functions for low contrast letters on the five
different backgrounds of Experiment 4. Note that the y-axis scale is
twice as great for the absent trial as for the target present trials.
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with the hypothesis that accumulation of information is

slowed in a limited-capacity parallel stage following se-

lection (Fig. 5). Experiment 5 provides data to distin-

guish between these two hypotheses.

7. Experiment 5: search for one versus two targets

Experiment 5 has two conditions. One is a simple

replication of Experiment 4 with subjects searching for a

T among L�s on backgrounds defined by the similarity of
their spatial frequency spectrum to that of the target

item. In the other condition, subjects distinguished dis-
plays containing two targets from those containing only

one. By this point, we can be reasonably sure that the

effect of background on mean RT will be additive with

set size, but how will that additive cost change if subjects

must search for one versus two targets? Subjects must

search through an average of N items in order to find a
single target in a set of M items. The value of N will vary
depending upon your model of search. In a standard
serial-self-terminating search model (Sternberg, 1969),

N ¼ ðM þ 1Þ=2. In an ‘‘amnesic’’ model (Horowitz &
Wolfe, 1998, 2001) N ¼ M þ 1. The choice of model,
however, is not critical to the present argument. In order

to find the second of two targets, the subject must con-

duct two searches. Under either model, more items must

be examined to find two targets than to find one target.

Call the number of items which must be examined to find
two targets kN , where k is a value greater than 1.0.
Now suppose that increasing the similarity of the

background to the search items has the effect of adding

‘‘J ’’ virtual items to the set of items that must be sear-
ched. Instead of having to search through N items to

find a target, the subject must search through N þ J
items. In order to find the second target, the subject will

need to search through kðN þ JÞ items rather than just
kN items. If the additive cost in the one target case is

created by the need to search J extra items, then the
additive cost of the background in the two-target case

should be �kJ �––i.e., greater than the one-target cost.
Suppose, on the other hand, that the effect of a more

difficult background is to slow the accumulation of

target-identifying information in a limited-capacity

parallel stage after selection. This situation is shown in
Fig. 17 (modeled in Fig. 5).

On one-target trials, the target is selected for analysis

and recognition after the same average amount of time,

whether it is on an easy or hard background. If it is on

an easy background, identity information accumulates

quickly (dashed, rising lines in Fig. 17). If the target is

on a hard background, the information accumulates

slowly (solid rising lines in Fig. 17). The cost of the
change in background is captured by the angle, alpha,

between the lines. In the two-target task, the RT is

changed by the increase in time required to select the

second target. The starting point of accumulation shifts

from the ‘‘1T’’ point to the ‘‘2T’’ point. This simply

shifts the critical accumulation (the one that determines

the RT) later in time. Recall that the angle, alpha, re-

flects the effects of the background on the accumulation.

This effect will be the same on Target 2 as it was on

Target 1. Thus, alpha remains the same and the cost of
the harder background remains the same.

Negative trials are more complex to model (Chun &

Wolfe, 1996). In the one-target case, a negative trial is

characterized by the complete absence of a target. In the

two-target case, subjects make a negative response to the

presence of only one target. Both the less efficient clean-

up and the slowed accumulation model predict that the

effects on negative trials should be proportional to the
effects on target-present trials. That is, the additive cost

of a harder background should be greater for negative

trials than for positive trials. Recall that the less efficient

clean-up model––with its added items––predicts that the

additive cost will be greater for two-target trials than for

one-target positive trials. Thus, it follows that the addi-

tive cost on negative trails should be greater for the two-

target negative trials than for the one-target negative
trials. The increase should be proportional. If the ad-

ditive costs for positive and negative one-target RTs

differ by a factor of 2, then the greater two-target costs

should also differ by a factor of 2. On the other hand,

the slower accumulation model predicts that the switch

from one-target to two-target trials will produce no in-

crease in the additive cost of background complexity on

positive-trial RTs. It follows from this reasoning that
there should be no difference between the costs for one-

target and two-target negative trials.

7.1. Method

The method was essentially the same as that of Ex-

periment 4, with the following exceptions. Item contrast

was set to 45% of the mean background luminance. Ten

Fig. 17. Schematic rendering of the accumulation of information for

target identification. Dashed, rising lines represent the faster rate of

accumulation for items on easy backgrounds (e.g., a 1:8 or 8:1 spatial

frequency ratio between background and search items). Thicker lines

show a slower accumulation rate for items on harder/noiser back-

ground (e.g., 1:1). 1T ¼ one-target trial starting point. 2T ¼ selection
of the second target in a two-target trial (see text for further details).
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subjects were tested for two blocks of 1680 trials; one

block in each task (one-target, two-target), with the

order counterbalanced across subjects. Trials were

evenly divided among three set sizes (4, 7, and 10) and

five backgrounds (1:8x, 1:4x, 1:1x, 2:1x, 8:1x where ‘‘x’’ is
the frequency spectrum of the target T). Within a block,

trial types were randomly intermixed.

7.2. Results and discussion

The general pattern of results was similar to the re-

sults of the earlier experiments. For the positive trials,
there were large, additive effects of background difficulty

(F ð4; 36Þ ¼ 47, p < 0:0001) on mean RT and no signif-
icant effect of background on the slope of the RT� set
size functions (F � 1). Slopes for the two-target condi-
tions were steeper than the slopes for the one-target

conditions (F ð2; 18Þ ¼ 58, p < 0:0001). The comparison
of the additive costs of the background between the one-

target and two-target conditions is central to this ex-
periment. To illustrate this comparison, the average RT

for all one-target, correct positive trials was subtracted

from the average one-target, correct positive trial RTs

for each background. The same calculation was done for

the two-target correct positive trials and for the one-

target and two-target, correct negative trials. The results

are shown in Fig. 18.

The relative effects of background difficulty on mean
RT are strikingly similar in the one-target and two-

target tasks of Experiment 5. Thus, for example, there is

a roughly 200 ms difference between the easiest and

hardest average one-target positive trial RTs. The dif-

ference between the easiest and hardest average two-

target positive trial RTs is the same 200 ms. Note that,

as in the previous experiments, the RT cost of harder/

noisier backgrounds is markedly larger on target-absent

than on target-present trials. However, here the mean

RT cost during negative trials is effectively the same for

the one-target and two-target tasks.
This is not the pattern of results one would expect if

search through more complex backgrounds is slowed by

the introduction of ‘‘virtual’’ items into the search set. If

there are more items, then there should be a greater

mean RT cost in the two-target condition because sub-

jects must make two searches through those items (with

or without memory for prior deployments of attention).

The results of Experiment 5 do fit the RT pattern pre-
dicted by the slower accumulation model (see Fig. 17).

In that model, mean RT cost attributable to background

complexity is driven entirely by the rate at which in-

formation is accumulated about the last target selected.

The predicted mean RT cost is not dependent on the

number of items selected prior to the last item, so the

one-target and two-target costs should be the same.

We began with four hypotheses about the possible
effects of background complexity:

1. The selection stage hypothesis (Figs. 3 and 4) is ruled

out by the failure to find a reliable increase in mean

RT � set size slopes with more complex backgrounds,
regardless of whether natural scene complexity (Ex-

periment 1) or spatial frequency similarity (Experi-

ments 4 and 5) were manipulated. There might be
an effect of local feature similarity on slope in Exper-

iment 3. However, it is relatively small when com-

pared to the additive RT effects.

2. The purely preattentive clean-up hypothesis is ruled

out by the difference in target-present and target-

absent RT costs observed in all of the above experi-

ments (Fig. 1). Additionally, the distribution of

set size 1 RTs (Experiment 4, Fig. 16) fails to show
the lateral shift predicted by this hypothesis. It is

simply implausible that subjects are delaying their

search for up to a full second when backgrounds are

difficult.

3. The less effective clean-up hypothesis (i.e., the addi-

tion of virtual items) is ruled out by the failure to find

a different RT cost for one-target and two-target

search tasks in Experiment 5 (see Fig. 17).
4. The slower accumulation hypothesis (see Figs. 5 and

17) fares the best with the present set of results. It cor-

rectly predicts an RT cost that is

(a) additive with set size,

(b) greater on target-absent than on target-present

trials,

(c) the same for one-target and two-target search

tasks.

Fig. 18. Relative mean RT as a function of background in Experiment

5. Squares represent the one-target condition. Circles represent the

two-target condition. Clearly, one-target and two-target conditions

show essentially identical effects of background similarity on relative

mean RT.
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The only models considered here have been situated
within the two-stage, preattentive–attentive architecture

growing out of the work of Neisser and Treisman. There

are, of course, other classes of models (e.g. Palmer et al.,

2000; Verghese, 2001). Any other contender would need

to be able to satisfy the constraints laid down by these

data.

8. Experiment 6: checkerboards: altering selection rate

In the five experiments to this point, background

complexity and similarity to search items have been

varied and the effects of these backgrounds on RT have

been consistent with the view that a one-step preatten-

tive process separates the display into search items and

background. When backgrounds are more complex or

more similar to search items, there is an RT cost that is
additive with set size. We have attributed that cost to a

slowing in the rate of accumulation of information

about object identity. Is there ever a reliable influence of

the background on the rate at which items are selected

for recognition? It seems there should be conditions

under which the processing of each individual item can

be made slower by the presence of a sufficiently complex

or similar background. Recall from the Introduction
that such an effect should be seen as an increase in slope

of the RT� set size function. In this final experiment,
we present a condition wherein backgrounds do modu-

late search slopes. As illustrated in Fig. 19, to get this
effect, we need to approximate the search for the pro-

verbial ‘‘needle in a haystack’’.

8.1. Method

8.1.1. Stimuli

The backgrounds in this experiment were checker-

board patterns of yellow and black squares as shown in

Fig. 19. The search items were 2� 3 check pieces of the
checkerboard shown in Fig. 19c. Targets were oriented

vertically while distractors were oriented horizontally.

Nine ratios of background to search item checks sizes

were used: 1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1, and 16:1.
The 1:16 coarse image corresponded to a uniform yellow

background. All other backgrounds were yellow and

black. Search items were either the same color as the

background (yellow and black) or different (red and

black). The search items were not aligned with the

background and were slightly beveled in appearance,

otherwise they would have been invisible when back-

ground and search items had the same check size and
color. Nevertheless, as can be seen most clearly in Fig.

19c, these items are hard to segment from similar back-

grounds. Set sizes of one, three, and five were tested.

8.1.2. Procedure

On each trial, observers saw one, three, or five ele-

ments pasted at random locations onto one of the nine

Fig. 19. Search difficulty was manipulated by varying the ratio of check size in the background to check size in search items. Panels (a–d) show

examples of 1:8 (a), 1:4 (b), 1:1 (c), and 2:1 (d) ratios. Panels (e) and (f) show examples of three item search arrays. Search items would be red and

black in panel (e) and yellow and black in (f).
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backgrounds. A vertical target was present on 50% of

trials. Observers were tested for 1620 trials each with red

& black and yellow & black search items. The display

remained on-screen until the subject responded. Subjects

were told to answer as rapidly and accurately as possible

and they were given feedback about their accuracy fol-

lowing each trial. Subjects took breaks after blocks of

several hundred trials.

8.1.3. Subjects

Twelve subjects were paid for their participation in

the study.

8.2. Results

RTs less than 200 ms and greater than 4000 ms were
labeled as errors. One subject was discarded from the

analysis because of a high error rate. Otherwise, average

error rates were very low: 1.5% and 2.2% for the color-

cue and no-color-cue conditions, respectively, including

the out-of-range RTs.

Fig. 20 shows RTs averaged across set size. As in

Experiment 4, the results take the form of a tuning curve

with a peak at the 1:1 ratio. Also consistent with the
previous experiments, the effect of background is greater

for target-absent than for target-present trials.

Fig. 21 shows the slopes of RT� set size functions for
target-present trials (target-absent results are similar but

with slopes that are about twice as steep). Here, for the

first time, there is a clear effect of background on

RT� set size slope, even with items differing in color
from the background. Slopes are markedly elevated
when the background check size is similar to the search

item check size. This result suggests that the processing

of each item has been slowed by its placement on this

background.

Statistical analysis bears out these conclusions. In this

experiment, literally every effect and interaction is sta-

tistically reliable (p < 0:001 in all cases). Restricting
discussion to those effects of interest, an ANOVA on

mean RTs shows that there are main effects of back-

ground, search item color, set size, and target presence/

absence. The interaction of background with target

presence/absence is significant, showing the usual

greater effect of background on target-absent trials. The

interaction of background with set size is significant,

indicating a slope difference––unlike what was seen in
the preceding experiments. This is confirmed by an

ANOVA on slope data. Here there is a significant main

effect of background on slope (F ð1; 10Þ ¼ 7:46, p <
0:001) and a main effect of search item color reflecting
the greater effect of background when background

and search items are of the same color (F ð1; 10Þ ¼ 52:16,
p < 0:001).

8.3. Discussion

With the stimuli of Experiment 6, it appears the task
of segmentation has not been successfully completed

when preattentive processes have done their work. Pre-

attentive processes guide attention to plausible target

locations. In the other five experiments, the time re-

quired to select individual items for further processing

was not altered by the nature of the background. In

Experiment 6, it was altered. When the check items are

presented on a background of checks of the same or
similar size, it appears to be harder to handle each item

in turn. It is interesting that the background alters the

search slope even when the search items are red and the

Fig. 20. RTs as a function of background to search item check size

ratio for yellow & black (circle symbols) and red & black (squares)

items. Target-present data are shown by solid lines and filled symbols;

target-absent data are represented by dashed lines and open symbols.

Fig. 21. Mean RT� set size slopes as a function of background to
search item check size ratio for yellow & black (open circles) and red &

black (closed squares) items. Target-present data are shown. Target-

absent data are comparable.
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background is yellow. Apparently, while the color cue

must help in the preattentive segmentation stage, it is

not good enough to present a reliably vertical or hori-

zontal ‘‘item’’ to the recognition stage.

This result, indicating that preattentive processes can

only do so much, is mirrored elsewhere in the search

literature. For example, in simple feature search, it is

known that search becomes harder as the target be-
comes more similar to the distractors or as the distrac-

tors become less similar to each other (Duncan &

Humphreys, 1989). Over a moderate range of variations

in similarity, making the task harder leads to an increase

in mean RT without an increase in slope (see Treisman

& Gormican, 1988 for examples in color search or

Royden, Wolfe, & Klempen, 2001 for examples in mo-

tion). However, at some point, the increase in difficulty
exceeds the capabilities of the preattentive feature pro-

cesses and slopes increase (Nagy & Sanchez, 1990).

9. General discussion

How do observers perform visual search tasks when

the background is not the blank screen usually em-

ployed in such experiments? The results of the experi-

ments presented here indicate that there is a preattentive

step in which candidate targets are segmented from the

background. Attention is then deployed to the locations

of those candidates. This allows the items to be selected
for further processing in a limited-capacity stage that

leads to their identification. This account fits very well

into the broad framework of the Guided Search theory

of visual search (Wolfe, 1994a, 2001; Wolfe et al., 1989;

Wolfe & Gancarz, 1996). The core idea in Guided

Search is that preattentive information is used to guide

the deployment of attention. A limited number of basic

features can provide guidance. These include color,
orientation, size, motion and a variety of cues to the 3D

layout of the world. There are perhaps a dozen such

features (the details are reviewed in Chun & Wolfe,

2001; Wolfe, 1998a). Thus, in a search for a red vertical

target among red horizontal and green vertical distrac-

tors, attention can be guided toward the set of red items

and toward the set of vertical items. The intersection of

those two sets is a likely locus for any red vertical items.
Guidance is a somewhat noisy affair and so some red

horizontal and/or green vertical items might receive

enough guiding activation to attract attention. Hence

slopes for conjunctions of features like color and ori-

entation are fairly shallow but tend not to be zero ms/

item.

Understood in these terms, ‘‘object’’ is just another

feature property. A preattentive process guides attention
toward objects and away from other areas of the dis-

play. In the example just given, the search would be a

search not for ‘‘red vertical’’ but for a red vertical object.

In the experiments presented in this paper, the search
is not for disembodied T-ness but for an object that is a

‘‘T’’.

This principle can be illustrated using the following

thought experiment.

In the left panel of Fig. 22, the target is a mid-gray

item among dark-gray and light-gray distractors. This is

a relatively inefficient search because it is hard to find a

target that lies between distractors in feature space.
Thus, it is hard to find a target that is orange among

distractors that are red and yellow (Bauer, Jolicœur, &

Cowan, 1996; D�Zmura, 1991) or to find a 0� (vertical)
target among distractors tilted 20� to the left and right
(Wolfe, Friedman-Hill, Stewart, & O�Connell, 1992). In
the right panel, search has become much easier even

though there is much more of the light-gray color that

colored one set of distractors on the left. The reason why
is clear enough. On a light-gray background, the light-

gray distractors literally disappear. They no longer

count in the visual search. It is easy to search for a mid-

gray item among dark-gray distractors on a light-gray

background.

It might be objected that the set size is cut in half on

the right. However, it seems obvious that doubling the

number of dark-gray distractors would not do much to
this search. It will remain efficient while the search on

the left will be inefficient.

If guidance were perfect, search would never be re-

quired. Attention would be deployed to the target item,

first time, every time. This is roughly what happens in a

simple feature search. If the target is a red item and the

distractors are green items and all these items are clearly

delineated on a blank background, then it will be pos-
sible to guide attention to a red target, if it is present,

without ever selecting a green distractor. When the target

is a T and the distractors are L�s on a blank background,
no preattentive feature appears to distinguish between

these items. Therefore, attention must be deployed at

random among these items until a target is found or the

search is abandoned.

The data presented in this paper suggest that, when
the T�s and L�s are placed on a moderately complex

Fig. 22. It is easier to find the mid-gray target on the right than on the

left. Why?
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background, the search items can still be separated from

the background and selected by attention. However,

when the background becomes more complex, it seems

to take longer to accumulate the information required to

identify a selected object. Perhaps the separation of

background from item is imperfect and enough back-

ground gets included to make identification more diffi-

cult.
For Experiments 1 through 5, the selection itself is

not impaired by the background. Only in Experiment 6

does a difficult background that exactly matches the

features of the target slow the rate of selection. In the

discussion of Experiment 6, we suggested that selection

could be slowed because of an inability of the preat-

tentive stage to adequately segment the scene into search

items and background. There is an alternative possibil-
ity. At some point, the background could interfere with

the identification stage so severely that the capacity of

that stage is reduced. Thus, it might normally be pos-

sible to load an item every 50 ms into an identification

stage able to handle six items at any one time. If iden-

tification became so difficult that only three items could

be in the ‘‘pipeline’’ at any one time, then selection

might have to be slowed down to accommodate this
reduced capacity.

Under either a slowed selection or a slowed identifi-

cation account, Experiment 6 presents a situation anal-

ogous to other difficult feature searches. Search for a red

object among green will be efficient. Search will be less

efficient if the target is red while the distractors are red

with a slight orange tint. An increase in the slope of

RT� set size functions results when preattentive pro-
cesses can no longer deliver only the target item. Slopes

get still steeper when it takes longer to determine the

actual color of each item. In Experiment 6, the preat-

tentive object parser delivers some set of candidate ob-

jects for subsequent search. When the checks on those

objects are similar to the checks in the background, it

either becomes harder to select the individual item or to

determine if that item is vertical or horizontal and search
becomes markedly inefficient. Whether this is a failure of

object segmentation or of orientation identification is

hard to tell in this experiment.

In summary, the experiments described here help to

bridge the gap between laboratory search tasks and

search in the real world. It has become clear that at-

tention is generally deployed to objects (Baylis & Driver,

1993; Egly, Driver, & Rafal, 1994; Goldsmith, 1998;
Yantis, 1993). As a consequence, most theories of search

implicitly accept the idea that some process must seg-

ment objects from the visual input. We do not know

how to segment complex scenes into objects. However,

the data from these experiments allow us to conclude

that the object segmenting step is likely to be preatten-

tive, rather than being performed separately for each

likely object location. Moreover, the data indicate that

the segmentation process is imperfect. Faced with

complex backgrounds or backgrounds similar to the

search items, the segmentation process will deliver

‘‘objects’’ that are harder to identify than objects on

clean backgrounds. Further experiments of this sort

should provide more information about the details of

the processes that segment scenes into objects and

background.
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