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In hybrid foraging, foragers search for multiple targets in multiple patches throughout the foraging
session, mimicking a range of real-world scenarios. This research examines outcome uncertainty,
the prevalence of different target types, and the reward value of targets in human hybrid foraging.
Our empirical findings show a consistent tendency toward risk-averse behavior in hybrid foraging.
That is, people display a preference for certainty and actively avoid taking risks. While altering the
prevalence or reward value of the risky targets does influence people’s aversion to risk, the overall
effect of risk remains dominant. Additionally, simulation results suggest that the observed risk-averse
strategy is suboptimal in the sense that it prevents foragers from maximizing their overall returns.
These results underscore the crucial role of outcome uncertainty in shaping hybrid foraging behavior
and shed light on potential theoretical developments bridging theories in decision making and
hybrid foraging.

Public Significance Statement
Hybrid foraging characterizes a wide range of real-world searching scenarios where people search for
multiple potential items across multiple patches. However, in the real world, rewards are often uncertain.
The present study highlights the important role of risk sensitivity in shaping hybrid foraging behavior
when potential items vary in prevalence, reward, and outcome uncertainty. Our findings reveal that
being cautious about taking risks can lead people to miss out on opportunities to maximize their overall
gains in hybrid foraging.
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Imagine that you are in the woods and hunting for various
types of mushrooms (e.g., shiitake, oyster, portabella). A common
strategy would be to search in one region for the different types of
mushrooms and then, at some point, to move on to a new region
in search of more mushrooms. This is an illustration of “hybrid
foraging” (Wolfe et al., 2016), where people search multiple patches

(here, regions of the woods) for multiple instances of multiple
possible types of targets (different types of mushrooms).

Hybrid foraging combines the characteristics of hybrid search
(i.e., searching for a single instance of any of several target types in
the presence of distractors; e.g., Schneider & Shiffrin, 1977; Wolfe,
2012) and foraging (i.e., searching for multiple instances of a single
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target type; e.g., Bond, 1981; Cain et al., 2012; Stephens & Krebs,
1986; Wolfe, 2013). It is an essential process in various cognitive
domains (see Hills et al., 2015, for a broad review), such as memory
search (Hills et al., 2012; Lundin et al., 2023) and social learning
(Kharratzadeh et al., 2017; Wisdom et al., 2013). The present study
probes hybrid foraging using visual displays where participants
search for multiple instances of several target types. Hybrid foraging
is characteristic of a wide range of real-world scenarios, from
looking for keys and cards in pockets to surfing the internet for a
literature review (Pirolli, 2007) to potential life-or-death situations,
such as screening medical images for potential signs of cancer
(Trueblood et al., 2021; Williams & Drew, 2019; Wolfe et al., 2016,
2021). Understanding hybrid foraging can help us comprehend the
key factors that influence behavior in these common but complex
real-world search scenarios.
The prevalence of different target types plays a significant role in

shaping hybrid foraging behavior (e.g., Wolfe et al., 2016, 2018). A
commonly occurring target is usually preferred over a rare target if
both targets have the same value, which can result in elevated miss
errors at low prevalence (i.e., the prevalence effect). The value of
targets also shapes hybrid foraging behavior. A high-value target is
usually preferred over a low-value target, even in caseswhere locating
high-value targets requires more effort (Tagu & Kristjánsson, 2022;
Wolfe et al., 2018).
Moreover, the effects of prevalence and value can interact with

each other. Wolfe et al. (2018) found that high-value but rare targets
were preferred over low-value but prevalent targets, indicating that
the preference for high value can override an aversion to rarity.
To date, the existing literature on hybrid foraging (e.g., Tagu &

Kristjánsson, 2022; Wiegand & Wolfe, 2021; Wolfe et al., 2018)
has primarily focused on situations where selection of a target type
guarantees an associated amount of reward (i.e., sure targets). However,
in the real world, rewards are often uncertain, and the uncertainty of
outcomes impacts human cognitive and neural processing (Monosov,
2020). For example, imagine that you prefer gathering shiitakes, but
only one in 10 of that variety was of edible quality. In such a situation,
an individual must consider multiple factors (reward probability,
reward value, and prevalence) to maximize foraging outcomes. In
particular, outcome uncertainty is likely to play a significant role in
shaping hybrid foraging behavior. The goal of this article is to examine
how outcome uncertainty affects foraging behavior and how the effect
of this risk interacts with the effects of reward value and prevalence
within the hybrid foraging paradigm.
Outcome uncertainty has been consistently shown to affect the

behavior of animals in food foraging (Bateson, 2002; Kacelnik &
Bateson, 1996) and in various decision-making paradigms with
humans (Weber et al., 2004). When foraging for food, animals often
encounter choices between options differing in reward variance. For
example, bumblebees and monarch butterflies usually have to
decide whether they should forage from the flower species providing
constant nectar volumes (i.e., sure targets) or the flower species
providing varying nectar volumes (i.e., risky targets). Studies (e.g.,
Cartar &Dill, 1990; Rodrigues et al., 2010;Waddington et al., 1981)
find that, in most cases, these nectar-collecting foragers prefer the
constant reward over the variable reward, reflecting a risk-averse
foraging strategy. On the other hand, animal foraging behavior can
change depending on the context (see review in Bateson, 2002). For
instance, Caraco (1981) and Caraco et al. (1990) showed that juncos

tended to be risk-averse when they expected to obtain sufficient
daily energy above their survival threshold. That is, when juncos had
ample intakes or the ambient temperature was comfortable, they
visited the station providing a fixed amount of millet seeds more
frequently than the station providing variable seed amounts. But
when their survival was in danger, juncos became risk-seeking and
visited the risky station more often than the sure station.

Human risk preferences also demonstrate sensitivity to context.
As captured by prospect theory (Kahneman & Tversky, 1979;
Tversky & Kahneman, 1992), when choosing between a sure gain,
such as a token for $100, and a risky gain with a low probability of
winning, such as a gamble yielding $1,000 with a 10% chance and
$0 with a 90% chance, people tend to be risk-seeking and prefer the
risky option over the sure option, although the expected values of
both options are equal. On the other hand, when choosing between
a sure gain ($100 with certainty) and a risky gain with a high
probability ($125 with an 80% chance and $0 with a 20% chance),
people tend to be risk-averse and prefer the sure target option
over the risky option. Furthermore, when people learn the option
information (e.g., the reward probability and the mean reward value)
from experiential sampling, as opposed to description, their risk
preferences can change such that they tend to be risk-averse when
encountering risky gains with a low probability and risk-seeking
when encountering risky gains with a high probability (e.g., Barron
& Erev, 2003; Hertwig & Erev, 2009; Hertwig et al., 2004; Weber
et al., 2004).

In this article, we examine the impacts of outcome uncertainty, the
prevalence of different target types, and the expected value of targets in
hybrid foraging. In a 15-min hybrid foraging session, participants
collect reward points by searching for target letters in “patches” (i.e.,
screens full of letters). They can travel to a new patch at any time during
the task (nonexhaustive foraging; Á. Kristjánsson, Ólafsdóttir, &
Kristjánsson, 2020). Different target letters are associatedwith different
numbers of reward points with different probabilities. In addition, the
prevalence of different target letters varies in some conditions. To
maximize overall return from the task, foragers have to balance the
likelihood of receiving a reward, the possible reward values, and the
ease of locating targets in a dynamic visual display. Performing well at
the task involves the interaction between cognitive components of both
decision making and visual search.

We quantify the degree of outcome risk across targets using the
coefficient of variation (CV). Compared to other risk measurements,
such as the outcome variance, the CV has been shown to be a better
predictor of risk preferences in meta-analyses of both animal
foraging behavior (Kacelnik & Bateson, 1996) and human risky
choice (Weber et al., 2004). Specifically, the CV measures the
outcome variability in relation to the mean value of an alternative, as
it is a ratio of the standard deviation of outcomes (SD) to the
expected value (EV). For instance, if a target yields a 20-point
reward with a 20% chance and 0 points with an 80% chance, then the
CV = SD

EV =
ffiffiffiffi
64

p
4 = 2. Intuitively, the CV reflects the degree of risk

per unit return. A high value of CV indicates that acquiring the target
involves a large amount of risk (i.e., a risky target), while a zero-
valued CV indicates a target providing a sure reward. Additionally,
we manipulate the prevalence of targets by varying the display
proportion of different targets at the onset of patches, following the
convention in standard hybrid foraging tasks (e.g., Wolfe et al.,
2016, 2018).
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We first investigate the effects of risk and prevalence on hybrid
foraging behavior by holding the expected value of targets constant
(Experiment 1: equal EV). We manipulated the association between
risk and prevalence across four conditions. In the equal-prevalence,
unequal-risk condition, the difference among targets is solely in CV,
and we assess the main effect of risk on foraging behavior in this
condition. In the unequal-prevalence, equal-risk condition, we
assess the main effect of prevalence on foraging behavior by having
all the targets be sure targets (i.e., CV = 0). In the next two
conditions, we are interested in the interaction between risk and
prevalence on foraging behavior. In the common-risk condition, the
risky target has the highest prevalence, while in the common-sure
condition, the sure target has the highest prevalence. Our results
suggest a robust preference for the sure target over the risky target,
even in the situation where the risky target is much more prevalent.
This finding highlights a strong risk-aversion tendency in human
hybrid foraging behavior.
Would an increase in the reward value of the risky targets reduce

risk aversion in hybrid foraging? We investigate this question in
a follow-up experiment (Experiment 2: unequal EV) in which we
assign a higher expected value to the risky targets. Our results
suggest that an increase in the reward value of risky targets reduced
risk-averse foraging behavior, especially when the risky targets were
highly prevalent, but not to an extent to eliminate risk aversion
altogether. Finally, we developed amodel based on optimal foraging
strategies for both in-patch searching and patch-leaving behavior in
our task. We compare our empirical findings to the simulations from

this optimal model to further explore how risk causes human
foragers to deviate from the optimal foraging strategies.

All of the experiments were conducted under Institutional Review
Board No. 210989 approved by the Institutional Review Board of
Vanderbilt University.

Experiment 1: Targets With Equal Expected Value

In Experiment 1, we examine the effects of risk and prevalence on
the foraging preferences in hybrid risky foraging tasks. The EV of
payoffs was held constant across targets.

Method

Participants

In order to have 50 participants in each of four conditions (Table 1),
we targeted a sample size of 200 participants. Participants were
recruited online from Amazon Mechanical Turk (MTurk) using the
CloudResearch platform according to the following criteria to ensure
data quality: (a) theymust be at least 18 years old, (b) theymust reside
in the United States, and (c) theymust have an approval rate of at least
95% for completed human intelligence tasks on MTurk. A total of
201 participants (102 women, 99 men; age:M = 40.86, SD = 12.61)
completed the study online. The sample size was determined prior to
data collection, and the data was analyzed only after all data had been
collected.
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Table 1
Manipulated Variables in Different Conditions of Experiments 1 and 2

Experiment Condition Target Prevalence Reward point Probability
Expected
value

Coefficient of
variation

Experiment 1: Equal expected
value (equal EV)

a: Equal prevalence unequal risk T1 8/32 4 1 4 0
T2 8/32 5 0.8 4 0.5
T3 8/32 8 0.5 4 1
T4 8/32 20 0.2 4 2

b: Common risk T1 2/32 4 1 4 0
T2 4/32 5 0.8 4 0.5
T3 9/32 8 0.5 4 1
T4 17/32 20 0.2 4 2

c: Common sure T1 17/32 4 1 4 0
T2 9/32 5 0.8 4 0.5
T3 4/32 8 0.5 4 1
T4 2/32 20 0.2 4 2

d: Unequal prevalence all sure targets T1 2/32 4 1 4 0
T2 4/32 4 1 4 0
T3 9/32 4 1 4 0
T4 17/32 4 1 4 0

Experiment 2: Unequal expected
value (unequal EV)

a: Equal prevalence unequal risk T1 8/32 2 1 2 0
T2 8/32 5 0.8 4 0.5
T3 8/32 16 0.5 8 1
T4 8/32 60 0.2 12 2

b: Common risk T1 2/32 2 1 2 0
T2 4/32 5 0.8 4 0.5
T3 9/32 16 0.5 8 1
T4 17/32 60 0.2 12 2

c: Common sure T1 17/32 2 1 2 0
T2 9/32 5 0.8 4 0.5
T3 4/32 16 0.5 8 1
T4 2/32 60 0.2 12 2

Note. Values shown in the prevalence column are the mean relative display proportions for targets when a new patch begins. EV = expected value.
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All participants who completed the 15-min experiment were paid
a $1 base rate and a performance-based bonus ranging from $0 to $1
to incentivize effort. The amount of the bonus was determined by the
average points participants earned per second: $0.20 for 2–3 points
per second, $0.50 for 3–4 points per second, $1 for above 4 points
per second, and $0 for below 2 points per second. The average bonus
payment participants received was $0.37.
Participants who had low performance (i.e., either their rate of

earning points was less than 1.5 points per second or they committed
more than 20% false positive errors) were excluded from the data
analyses. The exclusion criteria were preregistered. In total, 22.38%
of participants (N = 45) were excluded. After the exclusions, we had
38 participants in Condition 1a, 34 in Condition 1b, 42 in Condition
1c, and 42 in Condition 1d.

Materials

We programed the hybrid foraging task in JavaScript. At the
beginning of a hybrid foraging session, eight letters were randomly
selected from the English alphabet. Four of the letters were assigned
to represent targets (i.e., T1, T2, T3, and T4), and the other four were
assigned to represent distractors. A click on a letter removed the
letter from the screen. Clicking on a distractor resulted in zero
reward. Selecting a target letter yielded a certain amount of reward
points with a certain probability (Table 1). Specifically, a selection
of T1 (i.e., the sure target) would always yield 4 reward points. T2,
T3, and T4 were designated as risky targets, with the potential to
yield 5, 8, and 20 points respectively, upon selection, with a
probability of 80%, 50%, and 20%, respectively. The order of risk
(as reflected in the CV values) among targets was T1 < T2 < T3 <
T4, with T4 being the riskiest target.
The prevalence rate of a target Ti was determined by the number

of instances of that target divided by the total number of instances
of all targets at the onset of patches (t0): Prevalence of Ti =

Number of Ti at t0P
4
i=1

Number of Ti at t0
=

Ni,t0P
4
i=1

Ni,t0

. In order to prevent participants from

adopting a counting strategy, we pseudorandomized the initial
number of Ti in a patch (i.e., Ni,t0 ). Let N̄i,t0 notate the mean number
of Ti at t0. The actual number of Ti at t0 was then set to be N̄i,t0 with
0.6 probability, N̄i,t0 − 1 with 0.2 probability, and N̄i,t0 + 1 with 0.2
probability. In the equal-prevalence condition, the average number
of each target at the onset of patches (i.e., N̄i,t0 ) was 8. In the
unequal-prevalence conditions, the average number of each target
varied between 2, 4, 9, and 17. On average, a foraging patch had 32
targets, and the average prevalence of target Ti at the onset of
patches was N̄i,t0=32. The number of distractors was equivalent to
the number of targets on average in each patch. Thus, participants
saw an average of 64 items on the screen at the start of a patch.
The association between CV and prevalence was manipulated

across four between-subject conditions (a, b, c, and d; Table 1). In
Condition a (unequal prevalence, equal risk), targets had equal
prevalence but varied in risk (i.e., CV). In Condition b (common
risk), the value of CV positively correlated with prevalence so that
riskier targets were more prevalent. In Condition c (common sure),
the value of CVwas negatively correlated with prevalence, resulting
in the sure target having the highest prevalence. In Condition d
(unequal prevalence, all sure targets), targets varied solely in prevalence
and the value of CV was held at zero (i.e., sure targets).

To prevent participants from adopting a “reading strategy”where,
for example, participants might start at the upper left and “read” to
the lower right (Wolfe et al., 2016), all of the letters (i.e., items for
foraging) were constantly moving on the screen at a rate of 20 pixels
per second. The total screen size of a patch was set to be 650 pixels×
650 pixels. Participants could proceed to a new patch at any time
during the foraging session by clicking on a button. The location of
patches on the screen remained fixed throughout the entire session
(see Figure 1).

Procedure

After consenting to participation, participants were randomly
assigned to one of four between-subject conditions (Table 1). At the
beginning of the experiment, participants were informed that their
task was to collect as many points as possible for 15 min by foraging
for target letters across multiple patches. They were also informed
that the amount of a bonus payment would be determined by their
performance, as measured by the number of points they earned per
second. After they read through the payment schedule, participants
were informed about the identity of the four target letters and about
the reward points, the winning probabilities, and the prevalence of
each target type. The description of each target type followed the
scheme: “Letter O has a X percent chance of giving you Y points.
Approximately, Z% of the targets will be this kind.” When
participants were ready, they proceeded to a short practice phase
where they were required to collect 100 points before they started
the 15-min main hybrid foraging task. Participants were informed
that their performance in the practice phase would not affect their
bonus amount.

During the main hybrid foraging task, participants selected a letter
by moving a blue cursor on top of it and clicking on it. Once a letter
was selected, it disappeared from the current patch. If the selected
letter yielded a reward, the cursor would turn green for 100mswith a
coin-dropping sound. Distinct coin-dropping sounds were assigned
for different numbers of reward points. If a selection resulted in zero
points, the cursor would turn red for 100 ms with a negative
feedback sound.

Participants did not need to hold the target letters in memory, as
they were constantly displayed at the top of the screen (see Figure 1a).
The number of points participants earned per secondwas displayed on
the top-left of the screen, and the total number of points participants
accumulated within a patch was presented on the top-right of the
screen. The 15-min main foraging task was divided into three 5-min
blocks to allow participants to take a short break in between. The
remaining time for a block and the total points earned by participants
throughout themain taskwere displayed on the right side of the screen
for participants.

Participants could move to a new patch by clicking on a blue
vertical bar located on the right side of the screen at any time, with a
cost of a 5-s transition time between patches. During the transition
time (Figure 1b), movements of letters ceased. Green boxes were
displayed at the locations of targets that had been selected, while red
boxes were displayed at the locations of uncollected targets on the
screen.Meanwhile, a countdown for the transition time was displayed
at the bottom of the screen. Even if participants selected all of the
target items in a patch, they needed to click on the blue vertical bar to
move to a new patch and incurred the travel time. After completing
the 15-min hybrid foraging task, participants were informed about the
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amount of bonus they earned and were asked to fill out a demographic
questionnaire (see Supplemental Materials for details).

Results

Our main analyses investigate the effects of risk and prevalence
on hybrid foraging behavior by examining within-patch foraging
behavior and patch-leaving behavior for each condition. The main
results are shown in Figure 2. Before presenting the results of these
analyses, we compared several overall performance measures across

conditions (Table 2). Results from Welch’s analyses of variance
(ANOVAs) showed that the number of patches participants viewed,
F(3, 79.5) = 0.057, p = .989, ω2 = −0.008; the number of clicks
participants made within patches, F(3, 79.2) = 2.367, p = .77, ω2 =
0.026; the average amount of time participants spent in-between
clicks, F(3, 79.2) = 2.732, p = .49, ω2 = 0.032; and the total number
points participants earned, F(3, 82.4) = 1.720, p = .169, ω2 = 0.014,
did not differ significantly across conditions in Experiment 1. In
addition, the error rate as measured by the average proportion of
clicks on nontarget items was below 5% in each condition. In total,
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Figure 1
Example Screenshots From the Hybrid Foraging Task

Note. Panel (a): A screenshot during the foraging task. Panel (b): A screenshot during the travel time
between patches. During the 15-min foraging session, participants accumulated reward points by
collecting moving target letters of four different types in patches. They could move to a new patch at
any time by clicking on a blue vertical bar on the right side of the screen, with a cost of a 5-s transition
time. Target types varied in outcome probability, expected reward value, and prevalence. Full
description of target information was provided to participants before the start of the foraging session.
pts = points. See the online article for the color version of this figure.
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Figure 2
Changes in Target Display and Target Selection Proportions Within Patches in Different Conditions of Experiment 1

(a) (b) (c) (d)

Note. Top row: Display proportions of each type of target at the first to the 30th patch click. Second row: Selection proportions of each type of
target at the first to the 30th patch click. Third row: Differences between selection and display proportions estimated at each patch click. Fourth
row: Proportion differences at the first patch click. Bottom row: Proportion differences at the 30th patch click. Error bars denote the standard error
of the mean. pts = points. See the online article for the color version of this figure.
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participants made over 650 clicks on average throughout the main
foraging task.

Within-Patch Foraging Behavior

We evaluated within-patch foraging preferences by assessing
the extent to which the selection of targets deviated from random
selection. Specifically, we compared the relative proportion of a
target being selected (termed the “selection proportion”) to the
relative proportion of that target on display (termed the “display
proportion”) at each click. We estimated the difference between
these two proportions for each target from the first to the 30th click
within patches. Fewer than 37% of patches received over 30 clicks.
The display proportion (the top row in Figure 2) quantifies the

proportion of a specific target on display in relation to the total
number of targets on display at the nth patch click. The pattern of
display proportions reflects the change in prevalence among targets
as they are selected (and thus depleted) in a patch. For example, if
there were eight instances of each target at the beginning of a patch,
and a participant selected T1 as their first choice, then the display
proportion for T1 is 8/32 at the first click and 7/31 at the second
click. The display proportions for the other targets (i.e., T2, T3, and
T4) are 8/32 at the first patch click and 8/31 at the second patch click.
The second row in Figure 2 shows the selection proportion of

each type of target. The selection proportions are calculated by
dividing the number of selections made on a specific target at the nth
patch click by the total number of selections made on all targets at
the nth patch click.
For instance, imagine a participant who sees a total of 25 patches

during the main task. In 22 of these 25 patches, their first click was
on a target, and in the remaining three patches, their first click was on
a distractor. Out of these 22 first clicks on targets, the participant
selected T1 for 13 times, T2 for six times, T3 for two times, and T4
for one time. In this case, the participant’s selection proportion for
T1, T2, T3, and T4 at the first click would be 13/22, 6/22, 2/22, and
1/22, respectively. Thus, the four values at each click will add to 1.
Differences between selection and display proportions reflect

the foraging preferences for each target after accounting for the
variation in prevalence among targets (the third row in Figure 2).
Random selection would be indicated by a zero difference between
selection and display proportions. A positive difference indicates
overpicking a target compared to what chance would predict, whereas
a negative difference reflects underpicking a target. We estimated

proportion differences of each target for each participant and then
performed analyses using those individual-level estimates.

Below, we first present the results from Conditions 1a (equal
prevalence) and 1d (unequal prevalence) to demonstrate the main
effects of risk and prevalence on foraging behavior, and then present
the results from Conditions 1b (common risk) and 1c (common sure)
to illustrate the interaction between effects of risk and prevalence on
foraging behavior in hybrid foraging tasks.

Unequal Risk, Equal Prevalence, Equal EV (Condition 1a). In
this condition where all of the targets had the same expected value and
were distributed evenly at the start of a new patch (i.e., the prevalence
of targets was equal), differences between selection and display
proportions varied by the riskiness of the targets (see the first column of
Figure 2). The difference between selection and display proportions for
T1 was above zero and exceeded that of the other targets at the start of
patches, reflecting a strong initial preference for the sure target in the
early stage of patch foraging. As T1 became increasingly harder to
locate as instances of T1 decreased, participants began to select the next
low-risk target (T2). Nevertheless, T1 was still overpicked compared to
chance, as indicated by the positive proportion differences. In contrast,
the proportion differences of risky targets, T3 and T4, were below zero
at the beginning of patch foraging, suggesting that participants selected
risky targets less often than predicted by chance.

Moreover, with the depletion of targets over time, the riskiest target
(T4) remained underpicked, reflecting that participants were averse to
risk when they foraged for multiple targets with equal expected value.
Eventually, selections among targets converged to random selection
toward the end of patch foraging (see the bottom row in Figure 2).
The observed behavioral patterns were supported by the results of
robust regression (Huber, 2004) with robust standard errors (see
Table 3; estimated coefficients are summarized in Supplemental
Table S1). As compared to ordinary least square, robust regression
employs alternative methods for residual minimization in order to
reduce the influence of outliers. We modeled the difference between
selection and display proportions as a linear function of the main and
interaction effects of target type and patch click, after accounting for
heteroscedasticity in the observed data (Hampel et al., 1986; Li, 1985;
see Supplemental Figure S1). In sum, participants demonstrated a
preference for certainty and an aversion to risk in Condition 1a.

Equal Risk, Unequal Prevalence, Equal EV (Condition
1d). Condition 1d was a baseline hybrid foraging condition
where all the targets yielded an identical and sure number of reward
points. The sole variation among targets was in terms of prevalence.
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Table 2
Overall Foraging Performance in Experiments 1 and 2 Throughout the Hybrid Foraging Session

Experiment Condition

Number of patch
click

Number of viewed
patch

Interclick time
(s) Total point

M SD M SD M SD M SD

Experiment 1: Equal EV a: Equal prevalence 26.777 4.923 26.868 7.231 1.099 0.355 2787.974 820.634
b: Common risk 26.701 5.854 27.177 13.899 1.229 0.467 2587.206 887.447
c: Common sure 28.621 4.096 27.333 7.814 1.027 0.413 2965.524 828.455
d: Unequal prevalence 28.772 3.155 26.714 6.232 0.989 0.251 2976.095 732.532

Experiment 2: Unequal EV a: Equal prevalence 29.350 3.124 22.909 6.339 1.219 0.504 4104.636 1284.761
b: Common risk 27.524 5.225 24.311 7.751 1.351 0.704 5884.578 2117.735
c: Common sure 27.897 5.886 25.750 7.484 1.135 0.400 2728.682 854.512

Note. EV = expected value.
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Observed proportion differences (the last column in Figure 2)
indicate that participants consistently selected the most common
target (T4) at a rate that was higher than predicted by chance, while
they underpicked less common targets (T1 and T2) throughout the
course of patch foraging. The results from robust regression (Table 3;
estimated coefficients are summarized in Supplemental Table S1)
corroborated these observations. Note that this represents an active
preference for the common items, not just the passive effect of relative
prevalence. These patterns indicate a standard prevalence effect on
participants’ foraging behavior; that is, the common targets were
preferred over the rare targets. This is consistent with the findings in
the existing literature on hybrid foraging (e.g., Wolfe et al., 2018).
Common Risk, Equal EV (Condition 1b). In Condition 1b,

risk was positively correlated with prevalence. The riskier targets
were more prevalent at the onset of patches. Despite this advantage
in prevalence, participants still avoided selecting the risky targets.
Similar to what was observed in the equal-prevalence condition
(Condition 1a), participants overpicked the sure target (T1) and
underpicked the risky target (T4) in the early stage of patch foraging
(second column in Figure 2), despite the fact that risky targets were
easier to locate at the onset of patches.
As targets were depleted over time, the difference between

selection and display proportions for the riskiest target (T4) increased
from a negative to a marginally positive value. This suggests that in
the later stage of patch foraging, the advantage in prevalence of the
riskiest target eventually led participants to select it more frequently,
but not to an extent that was significantly greater than random
selection. Meanwhile, the selection of the other targets (T1, T2, and
T3) also converged to a pattern of random selection. The results of
robust regression (Table 3; estimated coefficients are summarized in
Supplemental Table S1) confirmed these observations.
As compared to what was observed in the equal-prevalence

condition (Condition 1a), the overall difference between selection and
display proportions for the riskiest target (T4) in Condition 1bwas less
negative, Welch’s t test: t(2088) = 8.51, p < .001, Cohen’s d = 0.368.

This suggests that an increase in the prevalence of risky targets
led to less pronounced risk aversion. However, risk still played a
dominated role in shaping foraging behavior. The most prevalent
target (T4) in the common-risk condition (Condition 1b) was
selected less often than in the baseline hybrid foraging task
(Condition 1d), Welch’s t test: t(1903) = −9.02, p < .001, Cohen’s
d = 0.385, because the most prevalent target was also highly risky
in Condition 1b but not in Condition 1d.

Common Sure, Equal EV (Condition 1c). A clear preference
for certainty and an aversion to risk were also observed in the
common-sure condition (Condition 1c), where risk was inversely
associated with prevalence. Throughout the course of patch foraging,
the differences between selection and display proportions for the sure
target (T1) were consistently above zero (the third column in Figure 2),
indicating that participants persistently overpicked the sure target. The
next low-risk target (T2) was underpicked in the early stage of patch
foraging, but then it was selected more often than predicted by chance
as sure target (T1) was depleted. In contrast, risky targets (T3 and T4)
were underpicked throughout patch foraging. The observed patterns
were supported by results of robust regression (Table 3; estimated
coefficients are summarized in Supplemental Table S1). Furthermore,
the proportion difference of the sure target (T1) deviated more
positively from zero in the common-sure condition (Condition 1c) than
in the equal-prevalence condition (Condition 1a), Welch’s t test:
t(2342)= 4.97, p< .001, Cohen’s d= 0.203, reflecting that participants
weremore eager to collect the sure target when it was easier to locate. In
other words, the preference for certainty was amplified by prevalence.

Patch-Leaving Behavior

Next, we examined the proportions of different targets that were
left behind in relation to the initial number of instances for each
target. For example, if a patch started with eight instances of T1 and
two of those instances were not selected when a participant left the
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Table 3
Results of Type III ANOVA Omnibus Tests for Effects in the Robust Regression Models
With Robust Standard Errors: Proportion Difference = 1 + Target Type × Patch Click for
Each Condition in Experiment 1

Condition Term df F p

1a: Equal prevalence Intercept 1 102.894 <.001
Target type 3 88.547 <.001
Patch click 1 64.378 <.001
Target Type × Patch Click 3 49.309 <.001

1b: Common risk Intercept 1 30.710 <.001
Target type 3 12.775 <.001
Patch click 1 53.523 <.001
Target Type × Patch Click 3 23.471 <.001

1c: Common sure Intercept 1 109.936 <.001
Target type 3 73.923 <.001
Patch click 1 10.226 .001
Target Type × Patch Click 3 14.318 <.001

1d: Unequal prevalence Intercept 1 18.604 <.001
Target type 3 39.672 <.001
Patch click 1 10.796 .001
Target Type × Patch Click 3 9.519 <.001

Note. Estimated coefficients are summarized in Supplemental Table S1. ANOVA = analysis of
variance; df = degrees of freedom.
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patch, then the left-behind proportion of T1 is 2
8. The observed

left-behind proportions for targets are illustrated in Figure 3.
We performed a two-way mixed ANOVA (Murrar & Brauer,

2018), using the Greenhouse–Geisser correction for sphericity on
degrees of freedom, to examine whether the left-behind propor-
tions were significantly different across targets (within-subject
factor) and across conditions (between-subject factor). Results
showed a significant difference in left-behind proportion across
targets, F(1.69, 256.92) = 7.20, p < .001, η2 = 0.019, and an
interaction between targets and conditions, F(5.07, 256.92)= 5.86,
p< .001, η2= 0.046. However, there was no significant main effect
of condition on left-behind proportions, F(3.00, 152.00) = 0.58,
p = .63, η2 = 0.007.
As shown in Figure 3, the patterns observed in Conditions 1a and

1d show the effects of risk (Condition 1a) and prevalence (Condition
1d) on overall foraging preferences. When targets varied solely in
the degree of risk (Condition 1a), the left-behind proportions for
targets were related to the degree of risk. The left-behind proportions
were larger for riskier targets. On average, participants left more
than 22% of the riskiest target (T4) while less than 10% of the sure
target (T1) when theymoved on to new patches.When targets varied
solely in prevalence (Condition 1d), the pattern of left-behind
proportions was related to the prevalence of targets. Participants left a
smaller proportion of the most prevalent target (8.97%) as compared
to the rarest target (16.93%), reflecting a standard prevalence effect.
When risky targets were highly prevalent (Condition 1b), the left-

behind proportions of risky targets (T3 and T4) were only slightly
smaller than those in the equal-prevalence condition (Condition 1a),
Welch’s t test: t(125) = 1.69, p = .094, Cohen’s d = 0.278. In
addition, the left-behind proportions of the risky targets in Condition
1b were not significantly lower than the safe targets in the same
condition, F(3, 73.1) = 0.340, p = .797, ω2 = −0.015. This suggests
that the advantage in prevalence for the risky targets was not enough
to override people’s preference for certainty.
In addition, we observed that the left-behind proportions in the

common-risk condition (Condition 1b) also differed from what was
observed in the baseline foraging condition (Condition 1d), even
though prevalence was manipulated similarly in these two conditions.
The left-behind proportion of T4was higher, t(49.1)= 2.17, p= .035,

Cohen’s d = 0.514, in Condition 1b than in Condition 1d. This
suggests that a common target is less appealing to foragers if it is
highly risky.

When the sure target was highly prevalent (Condition 1c), we
observed a similar pattern of left-behind proportions as in the
equal-prevalence condition (Condition 1a). In both conditions, the
left-behind proportions of risky targets (T3 and T4) were much
higher than the left-behind proportions of safer targets (T1 and T2),
suggesting an overall preference for certainty and aversion to
risk—Welch’s t test: t(101) = −3.23, p = .002, Cohen’s d = −0.523
for Condition 1a; t(128) = −3.61, p < .001, Cohen’s d = −0.558
for Condition 1c.

Experiment 1: Conclusions

In Experiment 1, we examined the effects of risk and prevalence
on hybrid foraging behavior. The patterns of within-patch selections
revealed a primary effect of risk on foraging behavior. Participants
showed a strong preference for certainty and an aversion to risk in all
conditions that varied the riskiness of targets. A secondary finding is
that the effects of risk and prevalence interacted with each other and
shaped foraging behavior together. When risky targets were prevalent,
participants showed less risk aversion, but not to the extent that this
aversion was eliminated.

Experiment 2: Targets With Unequal Expected Value

As shown in the existing literature (e.g., Wolfe et al., 2018), the
EV of targets can also play an essential role in shaping foraging
behavior. In Experiment 2, we examine the effect of expected value
in conjunction with the effects of risk and prevalence on foraging
behavior. We are particularly interested in probing whether an
increase in the expected value of risky targets would encourage
individuals to seek out these targets. To achieve this, we manipulated
expected values to be positively associated with CV values across
targets. That is, the riskier targets yielded higher expected outcomes.
Experiment 2 consisted of three conditions, paralleling the first three
conditions of Experiment 1 (Conditions a–c).
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Figure 3
Average Proportions of Each Target Left Behind When Participants Moved to a New Patch in Experiment 1

(a) (b) (c) (d)

Note. The error bars denote the standard error of the proportions. pts = points. See the online article for the color version of this figure.
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Method

Participants

One hundred fifty participants (86 women, 62 men, one nonbinary,
one agender; age: M = 41.91, SD = 12.85) recruited from MTurk
usingCloudResearch completed the study. Participantswere recruited
subject to the same criteria used in Experiment 1 to ensure data
quality. The sample size was determined prior to starting the data
collection, and the data were analyzed only after all data had been
collected. The payment schedule was identical to Experiment 1. The
average bonus payment participants received was $0.66.
Before the data analyses, 11.33% of the participants (N = 17) were

removed due to poor performance. The exclusion criteria were
identical to Experiment 1. After the exclusions, we had 44 participants
in Condition 2a, 45 in Condition 2b, and 44 in Condition 2c.

Materials

The materials used in Experiment 2 were identical to those used
in Experiment 1, except that EV was positively associated with CV
across targets in all of the conditions (Table 1). In Condition 2a (equal
prevalence), all the targets had the same prevalence but varied in both
expected value and risk. In Condition 2b (common risk), the high-EV,
riskier targets were more prevalent. In Condition 2c (common sure),
the low-EV, sure target was the most prevalent. Note that the
differences in EV were quite dramatic. The sure target had an EV of
2 points while the riskiest target had an EV of 12 points.

Procedure

The procedures were identical to Experiment 1.

Results

We first compared overall performance measures across conditions
(see Table 2). Results from Welch’s ANOVAs suggested that the
number of patches participants viewed, F(2, 86.1) = 1.84, p = .164,
ω2 = 0.037; the number of clicks participants made within patches,
F(2, 80) = 2.48, p = .090, ω2 = 0.062; and the average time
participants spent in-between clicks, F(2, 83.3) = 1.64, p = .199,
ω2 = 0.028, did not differ significantly across conditions. The error
rate, as measured by the average proportion of clicks on nontarget
items, was below 5% in each condition. In total, participants made
over 650 clicks on average throughout the foraging session. These are
similar to what we observed in Experiment 1.
Comparing prevalence-CV conditions (i.e., Conditions a, b, and

c) between Experiments 1 and 2, we find that the number of clicks
participants made within patches in Experiment 2 (M= 28.3 clicks/
patch) was similar to that in Experiment 1 (M = 27.4 clicks/patch),
Welch’s t test: t(238) = −1.29, p = .197, Cohen’s d = −0.165.
However, participants in Experiment 2 on average viewed fewer
patches (M = 24.3) as compared to those in Experiment 1 (M =
27.1), Welch’s t test: t(206) = 2.53, p = .012, Cohen’s d = 0.325.
This is likely because, on average, it took participants longer to
make a click in Experiment 2 (M = 1.236 s) than in Experiment 1
(M = 1.111 s), Welch’s t test: t(241) = −2.01, p = .045, Cohen’s
d = −0.254.
Unlike Experiment 1, we observed a significant difference in the

total number of points participants earned across conditions in

Experiment 2, F(2, 78.8) = 50.68, p < .001, ω2 = 0.429.
Participants earned more points in the common-risk condition than
in other conditions. This is because the risky targets now had
higher expected values. As a result, the condition with more risky
targets (i.e., Condition 2b) had a higher expected value for the
entire task.

Below, we examine the foraging behavior across time in a patch, as
illustrated in Figure 4, for the different conditions of Experiment 2.We
also compare foraging behavior in Experiment 2 to the corresponding
conditions in Experiment 1 (e.g., Condition 1a vs. Condition 2a).
We assess both within-patch foraging behavior and patch-leaving
performance to investigate the effects of expected value, risk, and
prevalence on hybrid foraging behavior.

Within-Patch Foraging Behavior

Unequal Risk, Equal Prevalence, Unequal EV (Condition
2a). When the targets were equally prevalent, participants showed
a preference for certainty in their patch foraging behavior, even
though the riskier targets had higher EVs. Differences between
selection and display proportions (the first column in Figure 4)
showed that the low-EV, sure target (T1) was overpicked, while the
high-EV, risky targets (T3, T4) were underpicked at the start of
patch foraging. With the depletion of targets, target selection
converged to random selection. However, as compared to Condition
1a in Experiment 1 where all the targets had the same EV, the sure
target T1 was picked less often, while the riskiest target T4 was
picked more often in Condition 2a. This suggests that a higher
expected value for the risky targets made participants more willing
to search for and select these targets. This shows that participants
were sensitive to EV, even if it did not fully overcome their risk
aversion.

To statistically assess the effect of variations in EV on the
proportion differences, we compared Condition 1a where targets
had equal EV to Condition 2a where targets had unequal EV. For
this analysis, we used the robust regression model from Experiment
1 but included an extra categorical independent variable “EV” with
two levels, namely equal EV (Condition 1a) and unequal EV
(Condition 2a). The results (see Table 4; estimated coefficients are
summarized in Supplemental Table S2) supported the aforementioned
observation that the presence of risky targets with higher EV
encouraged individuals to select those targets more often as compared
to the situation where all targets had equal EV.

Common Risk, Unequal EV (Condition 2b). When the high-
EV, risky targets were highly prevalent in patches, participants still
underpicked the risky targets and overpicked the sure target (see the
middle column in Figure 4). However, as instances of the sure target
were depleted during the course of foraging, the riskiest target (T4)
was eventually overpicked compared to the other targets. This
suggests that risk-sensitive preferences had an initial impact on patch
foraging behavior, but the high expected value and high prevalence of
T4 eventually resulted in a bias toward risky choices over time. The
observed patterns were confirmed by the results of a robust regression
analysis (Table 4) performed on data collected from common-risk
conditions in the equal EV experiment (Condition 1b) and unequal
EV experiment (Condition 2b). In comparing Conditions 1b and 2b,
we observed that the proportion differences of T4 increased with
patch clicks in both conditions, but started higher in the unequal EV
condition than in the equal EV condition.
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Figure 4
Changes in Target Display and Target Selection Proportions Within Patches in Different Conditions
of Experiment 2

(a) (b) (c)

Note. Top row: Display proportions of each type of target at the first to the 30th patch click. Second row:
Selection proportions of each type of target at the first to the 30th patch click. Third row: Differences between
selection and display proportions estimated at each patch click. Fourth row: Proportion differences at the first
patch click. Bottom row: Proportion differences at the 30th patch click. Error bars denote the standard error of the
mean. pts = points. See the online article for the color version of this figure.
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Common Sure, Unequal EV (Condition 2c). We observed
similar selection patterns for the sure and the low-risk targets in
Condition 2c as compared to those in Condition 1c. Despite having a
relatively low EV, participants overpicked the sure target (T1)
throughout patch foraging and overpicked the second lowest risk
target (T2) as patch foraging progressed (Figure 4). This suggests
that when the sure target was prevalent, the preference for certainty
was robust to variations in expected value.
However, unlike Condition 1c where the risky targets (T3 and T4)

were underpicked throughout the entire course of patch foraging,
participants in the unequal EV condition selected the risky targets
close to the random chance rate at the beginning of patch foraging.
With the depletion of targets over time, they then underpicked the
risky targets toward the end of patch foraging. These patterns
suggest that the higher expected values of the risky targets in
Condition 2c encouraged participants to initially select these items
more often than in Condition 1c.
The results of a robust regression analysis (Table 4), performed on

data collected from both common-sure conditions (Conditions 1c
and 2c), corroborated these observations. The proportion differences
of the risky targets started near zero and decreased with patch clicks
in the unequal EV condition, whereas in the equal EV condition, the
proportion differences of these targets started from a significant
negative value and barely changed with patch clicks.
It is worth stressing how strongly participants favor a sure target.

As noted above, the riskiest target (T4) in the various conditions of
Experiment 2 paid, on average, 12 points compared to 2 points for the
sure target T1 that paid off every time it was clicked. Nevertheless, in

each condition of Experiment 2, participants continued to favor the
sure target at the start of foraging, moving to the risky target only once
the instances of the sure target were depleted. In a single gamble, this
mightmake some risk-averse sense. After all, in a single gamble, even
if the EV is 12, there is an 80% chance that you will come away with
nothing. However, in a foraging situation like in Condition 2a, for
example, if you pick all the eight T4 items, there is only a 16.78%
chance of coming up empty-handed. It seems as if participants are
playing a foraging game by something like single gamble rules even
though that is quite clearly not optimal (see modeling section below).

Patch-Leaving Behavior

Similar to Experiment 1, we assess the effects of risk and prevalence
on overall foraging behavior by comparing the left-behind proportions
across different prevalence-CV conditions in Experiment 2. We then
assess the effect of expected value by comparing left-behind
proportions across equal EV and unequal EV experiments for each
prevalence-CV relationship.

Paralleling our previous findings in Experiment 1, the results of a
two-waymixed ANOVA (Murrar & Brauer, 2018) performed on the
data collected from Experiment 2 show a significant interaction
between targets and conditions on left-behind proportions, F(3.97,
258.29) = 10.572, p < .001, η2 = 0.056. However, there was no
significant main effect of targets, F(1.99, 258.29) = 0.849, p = .428,
η2 = 0.002, or conditions, F(2, 130) = 2.209, p = .114, η2 = 0.021,
on left-behind proportions.
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Table 4
Results of ANOVA Omnibus Tests for Effects in the Robust Linear Regression Models With Robust
Standard Errors: Proportion Difference= 1+ Target Type× Patch Click× EVComparing Experiments 1
(Equal EV) and 2 (Unequal EV)

Condition Term df F p

2a: Equal prevalence Intercept 1 102.387 <.001
Target type 3 88.188 <.001
Patch click 1 64.128 <.001
EV condition 1 10.654 .001
Target Type × Patch Click 3 49.118 <.001
Target Type × EV Condition 3 13.444 <.001
Patch Click × EV Condition 1 8.390 .004
Target Type × Patch Click × EV Condition 3 8.103 <.001

2b: Common risk Intercept 1 31.774 <.001
Target type 3 13.001 <.001
Patch click 1 54.273 <.001
EV condition 1 6.555 .010
Target Type × Patch Click 3 23.801 <.001
Target Type × EV Condition 3 1.574 .193
Patch Click × EV Condition 1 0.361 .548
Target Type × Patch Click × EV Condition 3 0.459 .711

2c: Common sure Intercept 1 110.681 <.001
Target type 3 73.862 <.001
Patch click 1 10.250 .001
EV condition 1 20.527 <.001
Target Type × Patch Click 3 14.396 <.001
Target Type × EV Condition 3 13.902 <.001
Patch Click × EV Condition 1 7.433 .006
Target Type × Patch Click × EV Condition 3 4.195 .006

Note. Estimated coefficients are summarized in Supplemental Table S2. ANOVA = analysis of variance; df =
degrees of freedom; EV = expected value.
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When all targets had equal prevalence but unequal EV (Condition
2a), the left-behind proportions were positively associated with the
riskiness of targets (the bottom-left panel in Figure 5). Participants
were more likely to leave risky items behind when they moved to the
next screen. This is similar to what we observed in the equal EV
condition (Condition 1a; the top-left panel in Figure 5). Consistent
with our observations, the results of a two-way mixed ANOVA
performed on the data fromConditions 1a and 2a showed a significant
difference in left-behind proportions across target types, F(1.65,
131.67) = 10.221, p < .001, η2 = 0.049, but not across different EV
conditions, F(1, 80) = 2.569, p = .113, η2 = 0.019. The interaction
between EV conditions and target types was also not significant,
F(1.65, 131.67) = 2.396, p = .105, η2 = 0.012.
When risky targets were highly prevalent, we observed that

participants in the high-EV condition (Condition 2b; the bottom-
middle panel in Figure 5) left behind a larger proportion of the
sure target (T1) and a smaller proportion of the risky targets as
compared to participants in the equal EV condition (Condition 1b;
the top-middle panel of the figure). The results of a two-way mixed
ANOVA performed on data from Conditions 1b and 2b supported
this observation, suggesting a significant interaction between
target types and EV conditions on the left-behind proportions,
F(1.36, 104.55) = 3.661, p = .046, η2 = 0.019. The main effects of
target types, F(1.36, 104.55) = 1.841, p = .175, η2 = 0.01, and EV
conditions, F(1, 77) = 0.062, p = .805, η2 = 0.0005, were not
significant.
When the sure target was highly prevalent, we observed that the

overall left-behind proportions in the unequal EV condition
(Condition 2c:M = 0.183; the bottom-right panel in Figure 5) were
larger than the equal EV condition (Condition 1c: M = 0.160; the
top middle-right panel in Figure 5), except that the left-behind
proportions for the riskiest target (T4) were smaller. The results of
a mixed two-way ANOVA performed on data from Conditions 1c
and 2c confirmed these observations, showing a significant main
effect of target types, F(2.31, 194.39)= 14.959, p< .001, η2= 0.060,
and a significant interaction between target types and EV conditions,
F(2.31, 194.39) = 4.670, p = .007, η2 = 0.020, on left-behind
proportions. The results found no significant main effect of EV

conditions on left-behind proportions, F(1, 84) = 0.358, p = .551,
η2 = 0.003.

Experiment 2: Conclusions

In Experiment 2, we examined the effect of expected value in
conjunction with the effects of risk and prevalence on hybrid
foraging behavior. The patterns of within-patch selections suggest
that participants generally prefer searching for and selecting sure
targets. This preference appears to hold even though when EV is six
times higher in risky targets than in the sure target in Experiment 2.
When high prevalence is combined with high EV (Condition 2b),
participants can be induced to favor the risky targets. These results
suggest that participants’ risk preferences in hybrid foraging are
fairly stable and surprisingly robust. Deviations from a preference
for certainty are only observed when risky targets are given multiple
advantages (e.g., having both higher EV and being easier/faster to
locate).

Optimal Hybrid Foraging Behavior

During a hybrid foraging session, there are two decisions foragers
must constantly make: (a) which target to select and (b) whether to
move to a new patch. In this section, we first investigate if the patch-
leaving behavior in our hybrid risky foraging task followed the
optimal strategy predicted by the marginal value theorem (MVT).
Then, we develop a risk-insensitive optimal model to assess how
participants’ foraging behavior compares to the optimal strategy
throughout a foraging session.

Optimal Patch-Leaving Rules

Besides deciding what to select during a patch, foragers also have
to decide when to move to a new patch. Switching between patches
involves a trade-off between exploration and exploitation (Daw
et al., 2006; Hills et al., 2015; Sutton & Barto, 2018). Originating
from animal studies, the MVT (Charnov, 1976) is one of the first
optimal models of patch switching in foraging. It proposes that it is
optimal to move to a new patch when the marginal gain from
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Figure 5
Average Proportions of Each Target Left Behind When Participants Moved to a New Patch in
Experiment 2

(a) (b) (c)

Note. The error bars denote the standard error of the proportions. pts = points. See the online article for the
color version of this figure.
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foraging in the current patch drops to the average gain established
throughout the foraging session. An example of this would be a
mushroom hunter leaving a region when their rate of mushroom
acquisition falls below the average acquisition rate established
throughout the forest.
The MVT has been found to capture the average patch foraging

behavior in a range of cognitive domains (see Daw et al., 2006;
Mehlhorn et al., 2015, for review). In human foraging, existing
evidence documented both in agreement with (e.g., Wolfe, 2013;
Wolfe et al., 2016; Zhang et al., 2015) and deviations from (e.g.,
Fougnie et al., 2015; Hutchinson et al., 2008; Á. Kristjánsson,
Björnsson, & Kristjánsson, 2020; Wolfe, 2013; Zhang et al., 2017)
MVT predictions about patch-leaving behavior. This indicates that
MVT captures some aspects of human patch-leaving behavior but
may not fully account for all of the variables influencing the
dynamics of human foraging (also see Bella-Fernández et al., 2022,
for review). Nevertheless, it is useful to see how well MVT predicts
patch-leaving behavior in this hybrid foraging setting.
We asked if the patch-leaving behavior in our task followed the

optimal strategy as predicted by MVT by comparing the instanta-
neous rate of return when participants left a patch (i.e., at the last patch
click) to their average rate of return estimated throughout the entire
foraging session using a paired t test for each condition (Wolfe et al.,
2018). The rate of return (in units of points/second) describes how fast
participants earn rewards. It accounts for both the number of points
earned at a click, on either a target or a nontarget item, and the amount
of time spent on making that click. We also assess the rate of clicks
(only considering the speed of clicks) and report these results in the
Supplemental Materials. The MVT predicts that foragers who adopt
an optimal strategy should terminate foraging in a patch when their
instantaneous rate of return drops to the average rate of return.
The instantaneous return rate was estimated by dividing the

number of reward points obtained from an acquisition by the amount
of time spent acquiring that gain. For instance, if a participant took
2 s to select a target and the selection yielded 4 points, then the
instantaneous rate of return is 4

2 points/s from this selection. The
average return rate was calculated by dividing the total number of
reward points by the total duration of the foraging session, including
both the time spent on foraging within patches and the time spent on
traveling between patches.

For the following analyses, we excluded extremely fast interclick
times (i.e., interclick time <300 ms; 4.5% of the data in Experiment
1 and 4.3% of the data in Experiment 2). The foraging duration
within a patch is defined as the time from the onset of a patch until
the final patch click. To allow for comparisons across conditions
(see Wolfe et al., 2018), we normalized return rates by dividing the
rate by the expected outcomes from a click, which was 4 points in
equal EV conditions and (2+ 4+ 8+ 12)/4= 6.5 points in unequal EV
conditions. To aggregate instantaneous rate data forMVT analyses, we
worked backward from the last click in a patch.

Equal EV Conditions

When all targets had the same expected value, we observed that
the instantaneous return rates decreased to the average return rates at
the time when participants decided to leave a patch (Figure 6). This
indicates that when it was no longer profitable for participants to
continue foraging in a patch, they chose to move on to a new patch,
which is consistent with the predictions ofMVT. The results of paired
t tests confirmed the observed patterns, showing that the instantaneous
return rates at the last patch click (Reverse Click 1) did not differ
significantly from the average return rates in each prevalence-CV
condition—Condition 1a: t(37) = −0.803, p = .427, Cohen’s d =
−0.130; Condition 1b: t(33) = 0.583, p = .564, Cohen’s d = 0.100;
Condition 1c: t(41) = −1.54, p = .132, Cohen’s d = −0.237;
Condition 1d: t(41) = 1.24, p = .223, Cohen’s d = 0.191.

Unequal EV Conditions

When riskier targets had higher expected values, return rates also
decreased during the course of foraging within a patch, but the rates
at the last click (Reverse Click 1) revealed differences in patch-
leaving behavior across conditions (Figure 7). The results of paired-
sample t tests suggest that the marginal return rate at the last click
was significantly above the average return rate in the common-risk
condition, Condition 2b, t(44) = 2.79, p = .008, Cohen’s d = 0.415,
but not in the equal-prevalence condition, Condition 2a: t(43) =
0.933, p = .356, Cohen’s d = 0.141, and the common-sure
condition, Condition 2c: t(43) = 1.01, p = .32, Cohen’s d = 0.152.
This suggests that when riskier targets had higher reward values and
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Figure 6
Return Rates Estimated From Experiment 1

(a) (b) (c) (d)

Note. The solid black lines show the instantaneous rate of return as a function of reverse clicks. Reverse Click 1 is the final click before
participants decided to move to the next patch. Reverse Click 2 is the penultimate selection and so on, backwards in time. The error bars denote
standard errors of instantaneous rates estimated at each reverse click. The dashed lines denote the corresponding average rates of return with the
gray-shaded ban denoting the ± standard errors.
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prevalence, participants’ patch foraging behavior deviated from the
optimal rule—they left patches too early, before maximizing their
returns from patch foraging.
In sum, the average patch-leaving behavior revealed that, in most

circumstances, participants terminated foraging within patches
when their marginal rate of gaining rewards dropped to their average
rate of gaining rewards, consistent with the predictions of MVT.
However, participants’ risk-averse foraging strategy can lead to
suboptimal patch-leaving behavior, especially when the risky targets
had high EV and were highly prevalent.

Optimal Hybrid Foraging Strategy

To maximize the overall return from hybrid foraging, foragers
must balance the ease of locating a target with the potential reward
from selecting that target. When all available targets have the same
expected value (as in Experiment 1), the optimal strategy should
only consider maximizing foraging speed: selecting targets (regard-
less of type) as soon as you locate them during patch foraging and
leave a patch when your marginal rate of collecting targets drops to
your average rate.
When targets have different expected values (as in Experiment 2),

then the optimal strategy is affected by the interplay between
foraging speed and potential rewards. For instance, if collecting a
prevalent but low-EV target (EV = 2 points) takes 0.5 s and a rare
but high-EV target (EV = 12 points) takes 2 s, it is optimal to go for
the high-value target even if it takes longer to find it. This is because
the marginal rate of return from collecting the high-EV target (122 = 6
points/s) is higher than that from the low-EV target ( 2

0.5= 4 points/s).
However, if it takes 4 s to locate the high-EV target (e.g., it is extremely
rare), then the optimal choice is to select the low-EV target because the
marginal rate of return from the high-EV target is too low (124 = 3
points/s).
To compare participants’ behavior to an optimal foraging

strategy, we develop a risk-insensitive optimal model. We compare
the simulated behavior from the model with the empirical
observations to assess how risk-sensitive foraging behavior may
deviate from the optimal strategy.

The Optimal Hybrid Foraging Model

As aforementioned, there are two decisions foragers must
constantly make during a hybrid foraging session: (a) which target
to select and (b) whether to move to a new patch. For the first
decision, we propose that the optimal strategy is to always select
the target yielding a maximum marginal rate of return. For the
second decision, we assume that the optimal strategy is to follow
the predictions of MVT and leave a patch when the marginal rate of
return drops to the average rate of return. Based upon these two
assumptions, we developed our optimal model.

As illustrated in Figure 8, during foraging, the model first
identifies the target that yields the maximum marginal return rate
and then compares it to the average return rate. If the maximum
marginal return is larger than the average return, the model selects
the target.

Otherwise, the model moves on to a new patch, incurring the travel
cost. This selection procedure iterates until the elapsed foraging time
reaches the time limit. Following Experiments 1 and 2, we set the
time limit for a single simulation (i.e., analogous to a participant) to be
15 min and the travel time to be 5 s. Note that this is a model of an
optimal observer who could, in fact, assess the marginal return rate of
all items in the display. In practice, observers would not be able to do
this and must be basing their click-by-click decisions on assessment
of a subset of all items. Thus, one cause for a departure from optimal
behavior would be the capacity limitations on the size of the sampled
subset.

The average return rate when deciding to select a target is
calculated by dividing the accumulated number of reward points by
the sum of the elapsed time in the session and the travel time:

Accumulated number of points earned
Accumulated time in the session + travel time. It describes the average points
earned per second when the model makes a target selection. The
marginal return rate for selecting a target is calculated as the ratio
between the target’s EV and the foraging time required to locate it:

Expected value of Ti
Foraging time to locate Ti. Note that the model uses the expected value of
targets in the calculation of the marginal return rate and is therefore
insensitive to variations in risk.

The time required to collect a target (i.e., response time) is
determined by two components: a baseline foraging time and an
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Figure 7
Return Rates Estimated From Experiment 2

(a) (b) (c)

Note. The solid black lines show the instantaneous rate of return as a function of reverse clicks. Reverse Click 1
is the final click before participants decided tomove to the next patch. Reverse Click 2 is the penultimate selection
and so on, backwards in time. The error bars denote standard errors of instantaneous rates estimated at each
reverse click. The dashed lines denote the corresponding average rates of return with the gray-shaded ban
denoting the ± standard errors.
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attention-switching time. The baseline foraging time is the amount
of time foragers need to locate a target, which should be affected by
two key variables: the number of available instances of a particular
target (Ti) and the total number of items on display. We assume
that the baseline foraging time follows a log-normal distribution
where the mean is a linear function of these two key variables. We
estimated this functional relationship using a separate set of data
collected from a baseline foraging experiment (i.e., Experiment 3;
details of this experiment are in the Supplemental Materials).
In the baseline foraging experiment, participants foraged for a

single sure target and automatically moved to a new patch without
incurring any travel time cost after exhausting all instances of
the target in the current patch. There were four between-subject
conditions determined by the number of instances of the target at the
onset of patches (2, 4, 9, and 17 as used in Experiments 1 and 2). The
initial number of items on display was kept constant at 64 across all

conditions. In short, the key manipulations in the baseline foraging
task mimic the settings used in Experiments 1 and 2.

When foragers search among multiple possible targets, there is a
switch cost when they shift their attention from searching for an old
item to searching for a new item (Krinchik, 1974). Existing evidence
shows that foragers tend to be slower when they switch to foraging
for a new item (Wolfe et al., 2019). We also observe this pattern in
our experiments. For each participant in the baseline hybrid foraging
condition (Condition 1d), we estimated the time cost for switching
attention by subtracting their average interclick times between
selections on the same target from their average interclick times
between selections on different targets. A paired-sample t test
confirmed that the interclick time between selections on two identical
targets (M = 922 ms) was significantly lower than between selections
on two different targets (M = 1,053 ms), t(41) = −8.65, p < .001,
Cohen’s d = 1.33. For simplicity, we keep the switch-cost time
constant at the mean difference of 131 ms in the simulations.

In sum, if the optimal model selects a target differing from the
previous selection, the response time for making a selection is the
sum of the baseline foraging time and the switch-cost time. If a
selection is the same as the previous selection, the response time is
equivalent to the baseline foraging time.

Simulation Results

We generated 50 sets of simulated data (analogous to recruiting
50 participants) from the optimal model for each condition in
Experiments 1 and 2.

Equal EV Conditions. As expected, when all possible targets
had the same expected value (Experiment 1), the simulated optimal
foraging behavior was modulated merely by prevalence across
targets (Figure 9). The model first overpicked the most prevalent
target and then started to overpick the next most prevalent target (top
row in Figure 9). The rare targets were consistently underpicked
throughout patch foraging. Subsequently, when moving to a new
patch, the left-behind proportion of the most prevalent target was the
lowest, while that of the rarest target was the highest (bottom row in
Figure 9). When targets were equally prevalent at the onset of
patches (Condition 1a), the simulated foraging behavior mimicked a
pattern of random selection.

Overall performance measures for the optimal model were similar
to our empirical observations. That is, the simulated number of
clicks in patches and the number of patches viewed throughout
the hybrid foraging session (Table 5) are very close to those of
human foragers (Table 2). However, the simulated patterns of patch
foraging behavior qualitatively differ from our empirical observa-
tions, suggesting that participants did not always select the most
profitable target during patch foraging.

Instead of foraging for the most prevalent target like our optimal
model, human foragers tend to search for the most certain target.
This is not a problem when the sure target is highly prevalent (e.g.,
Condition 1c) because a certainty-seeking foraging strategy is
equivalent to the optimal prevalence-seeking strategy in this
situation. As expected, the empirical patterns, observed in the
common-sure condition (Condition 1c, see Figure 2), qualitatively
approximate the patterns simulated from the optimal model.
Nevertheless, when the sure target is rare in patches (e.g.,
Condition 1b), the risk-sensitive foraging strategy adopted by
human foragers can lead to large deviations from the optimal
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Figure 8
A Flowchart of the Optimal Foraging Model Developed for the
Hybrid Foraging Task

Note. Each diamond denotes a decision to be made. Each rectangle denotes
a process to be executed. Each squircle denotes a start or end point of the
system; Max. = maximum.
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model. As observed in the common-risk condition (Condition 1b,
Figure 2), preferences for certainty caused participants to overpick
the low prevalent target and underpick the high prevalent target.
These empirical patterns are opposite of those produced by the
optimal model. Subsequently, the total number of points earned
by the model is higher than human foragers, especially in the
common-risk condition—Condition 1a: Mmodel−human = 338,
t(86) = 2.91, p = .005, Cohen’s d = 0.626; Condition 1b:
Mmodel−human = 839, t(82) = 6.69, p < .001, Cohen’s d = 1.49;
Condition 1c:Mmodel−human = 475, t(90) = 4.06, p < .001, Cohen’s
d = 0.849.
Unequal EV Conditions. When targets had different expected

values (Experiment 2), the simulated optimal foraging behavior
was sensitive to these differences (Figure 10). The model first
overpicked the highest EV target and then started to overpick the

target with the next highest EV when the highest EV target was
depleted (top row in Figure 10). The low-EV targets were barely
selected throughout patch foraging—the model tended to move to
the next patch rather than spending the time to forage low-EV
stimuli. Subsequently, when moving to a new patch, the left-behind
proportion of the highest EV target was the lowest, while the left-
behind proportion of the lowest EV target was the highest (bottom
row in Figure 10). These results suggest that in Experiment 2, the
optimal foraging strategy is to collect most of the instances of the
high-EV targets (T3 and T4) in a patch and then immediately move
to a new patch.

The simulated foraging behavior from the optimal model differs
markedly from our empirical observations. In terms of overall
performance measures, the number of clicks in patches simulated
from the optimal model (Table 5) was less than that of human
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Figure 9
Foraging Behavior Simulated From the Optimal Hybrid Foraging Model for Equal EV Conditions (Experiment 1)

(a) (b) (c) (d)

Note. Top row: Differences between selection and display proportions at each patch click for each target. Bottom row: The proportions of
each target left behindwhen themodel moved to a new patch. The error bars denote standard errors. pts= points; EV= expected value. See the
online article for the color version of this figure.

Table 5
Overall Foraging Performance Generated by the Optimal Model Throughout the Hybrid Foraging Session

Experiment Condition

Number of patch
click

Number of
viewed patch

Interclick time
(second) Total point

M SD M SD M SD M SD

Experiment 1: Equal EV a: Equal prevalence 30.869 0.082 26.320 0.471 0.967 0.002 3126.160 54.188
b: Common risk 29.607 0.241 29.700 0.463 0.879 0.002 3426.080 37.132
c: Common sure 29.587 0.264 29.840 0.370 0.879 0.002 3440.800 33.064
d: Unequal prevalence 29.605 0.262 29.700 0.463 0.879 0.003 3425.360 42.298

Experiment 2: Unequal EV a: Equal prevalence 14.312 0.204 40.360 0.485 1.238 0.005 5826.480 39.909
b: Common risk 22.081 0.183 36.940 0.240 0.899 0.003 8815.120 60.481
c: Common sure 10.376 0.811 52.060 1.731 1.213 0.041 3578.760 36.399

Note. EV = expected value.
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foragers (Table 2), while the number of patches viewed throughout
the hybrid foraging session was higher. The model accumulated a
higher total number of points by the end of the session, especially in
Condition 2b—Condition 2a: Mmodel−human = 1,722, t(92) = 9.48,
p < .001, Cohen’s d = 1.96; Condition 2b: Mmodel−human = 2,931,
t(93) = 9.79, p < .001, Cohen’s d = 2.01; Condition 2c:
Mmodel−human = 850, t(92) = 7.03, p < .001, Cohen’s d = 1.45. The
simulated patterns of patch foraging behavior and patch-leaving
behavior also qualitatively differ from our empirical observations.
When the risky targets were highly prevalent (Condition 2b),

participants did not follow the optimal foraging strategy until the
end of patch foraging. When the risky targets were not highly
prevalent (Conditions 2a and 2c), participants consistently over-
picked the low-EV targets while underpicking the high-EV targets
(Figure 4), which is opposite to the predictions of the optimal model.
These discrepancies between our empirical observations and the
optimal simulated patterns highlight the potential influence of risk-
sensitive preferences on hybrid foraging. Due to participants’
certainty-seeking and risk-averse foraging behavior, they not only
inefficiently spent time searching for low-EV targets but also left
patches too early when it was still profitable to continue collecting
high-EV targets (see Condition b in Figure 7).

Modeling Conclusions

The simulation results from the optimal model demonstrate
that the optimal strategy for the equal EV conditions should be

prevalence-seeking while for the unequal EV conditions it should
be sensitive to expected value. The comparisons between the
simulated patterns and our empirical observations reveal that the
risk-sensitive foraging strategy adopted by human foragers in most
cases was not optimal. That is, they failed to always select the most
profitable target during patch foraging and left patches without
maximizing overall return.

Transparency and Openness

The preregistrations for all of the experiments, the data, and the
code for the optimal model simulation are available on the Open
Science Framework at https://osf.io/bf9st/.

General Discussion

The hybrid risky foraging paradigm mimics a wide range of real-
world scenarios such as food hunting, grocery shopping, and
medical screening. The present study extends the existing literature
on both decision making and visual search by examining the
influence of outcome uncertainty, expected value, and prevalence of
targets in a hybrid foraging paradigm. Our primary findings suggest
that human foragers tend to adopt a risk-sensitive strategy, meaning
that they seek certainty and are averse to risk in hybrid foraging, at
least in the task implemented here.

Moreover, such a risk-sensitive strategy is robust, remaining
dominant after changes in either the prevalence or the expected
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Figure 10
Foraging Behavior Simulated From the Optimal Hybrid Foraging Model for Unequal EV
Conditions (Experiment 2)

(a) (b) (c)

Note. Top row: Differences between selection and display proportions at each patch click for each target.
Bottom row: The proportions of each target left behind when the model moved to a new patch. The error bars
denote standard errors. pts= points; EV= expected value. See the online article for the color version of this figure.
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value of targets. Note that individuals are not insensitive to
prevalence and expected value. Participants were willing to search
for and select risky targets when these targets were both prevalent
and had high expected value, suggesting that they were sensitive to
these two factors. Nevertheless, their foraging strategy was still
dominated by risk sensitivity. Our modeling results additionally
indicate that participants’ risk-averse foraging behavior prevented
them from maximizing their overall returns from foraging. As
compared to an optimal model, participants overpicked low-EV
targets and underpicked high-EV targets and, in some cases, left a
patch too early.
One question raised by the current findings is why are risk-sensitive

preferences so persistent in hybrid foraging tasks? Participants
consistently preferred certainty over risk, in spite of an increase in the
prevalence or expected value of the risky targets. One possibility is
that the use of constantly moving targets in our tasks may increase the
difficulty of target searching, which could bias foragers toward a
conservative foraging strategy. However, results from a replication
using static targets showed that participants maintained a preference
for sure payoff targets over risky ones (see Supplemental Materials).
This suggests that the cognitive processes responsible for the
emergence of risk-sensitive foraging behavior are not a simple side
effect of our dynamic stimuli.
Building from existing findings in experience-based risky choice,

we propose a couple hypotheses that may attribute to the risk-sensitive
foraging behavior in our study. One possible cause of risk-averse
foraging behavior may be related to the underweighting of lower
winning probabilities. Foragers in our tasks have the opportunity to
repeatedly sample outcomes from different targets (i.e., options), and
they receive instantaneous feedback on their selections. This is similar
to decisions from experience, where decision-makers learn about
options through sampling (e.g., Barron&Erev, 2003). Existing studies
show that people tend to underestimate low probabilities in this case
(Hertwig & Erev, 2009; Hertwig et al., 2004). For example, when
choosing between a sure token for $100 (sure gain) and a gamble
yielding $1,000 with a 10% chance or nothing with a 90% chance
(risky gain), people who base their choices on their direct experience
of these two options prefer the sure gain over the risky gain because
they perceive the likelihood of winning $1,000 to be much lower than
10%. In hybrid foraging tasks, this underweighting of low probabilities
from experience might make the riskiest target (with a winning
probability of 20%) appear less attractive to foragers. Although it
seems unlikely that participants would underestimate the winning
likelihood of the riskiest target in Experiment 2 to the extent that its
perceived EV (Tversky &Kahneman, 1992) would fall below the true
EV of the sure target.
Evidence in experience-based risky choice also suggests that

decision-makers tend to update their knowledge of options based on
their recent experience (Hertwig et al., 2004; Hertwig & Pleskac,
2010). Since foragers constantly receive feedback on their selections
in hybrid foraging tasks, they may also update their knowledge
about targets in a similar way. Previous studies in hybrid foraging
show that the attention-switch cost (i.e., the additional time incurred
when searching for a different target type) can lead to a response-
priming effect (Tagu & Kristjánsson, 2022; Wolfe et al., 2016,
2018). That is, foragers are more likely to select the same type of
item as the previously selected one than to switch to a new item. Our
findings from the equal-prevalence conditions (see Supplemental
Figure S6) align with these results and provide indirect evidence for

a recency bias in our task. More specifically, a risky gain with a low
winning probability would be less likely to happen in recent events
and thus have less impact on decisions as compared to a sure gain
(Hertwig et al., 2004). This recency-biased knowledge updating
could lead to a certainty-seeking strategy in our tasks.

Recency bias can result in a win-stay/lose-shift strategy in
decision making (Lejarraga & Hertwig, 2017; Nowak & Sigmund,
1993; Worthy & Maddox, 2014). Nevertheless, in the current risky
hybrid foraging task, the observed behavior did not reflect the use of
this heuristic (see Supplemental Figure S7). In the equal-prevalence
conditions of both experiments, foragers selected the target type
matching their previous selection more frequently than predicted
by chance, regardless of whether the previous selection yielded a
return or not.

This is likely because switching between target types in foraging
incurs additional attentional costs. Previous work has shown that
a monetary cost for switching responses in an experience-based
sequential choice task can increase choice inertia (i.e., staying with
the same option), even if the average payout (i.e., EV) of that option
is lower than others (Ashby & Teodorescu, 2019). The attention-
switch cost might modulate the stay-switch behavior in risky
hybrid foraging in a similar way. On the other hand, we suspect that
selecting the same target for a run might encourage foragers to rely
on a small sample size (e.g., the length of run) to update their
knowledge of outcome distributions, which is consistent with the
theory of underweighting low probabilities in experience-based
decisions. In short, it appears that risky hybrid foraging involves
complex interactions between cognitive components of both
decision making and visual search. Future studies may advance our
understanding of these interactions by extending foraging models for
stay-switch behavior (e.g., Clarke et al., 2022; Le et al., 2023) to
incorporate an outcome sampling algorithm inspired from decision-
making theories (e.g., Plonsky et al., 2015; Teodorescu&Erev, 2014).

We note that the hybrid foraging tasks we used are not exactly the
same as the typical experience-based risky choice paradigm. In
typical decisions from experience, decision-makers usually make
decisions solely based on the knowledge they learn from experience
(Weber et al., 2004). In our experiments, foragers were provided
with a complete description of targets (i.e., options) prior to starting
foraging. It is likely participants formed some knowledge about
targets from this initial information, but they may still update their
knowledge based on their experience in the task. Jessup et al. (2008)
showed that when making repetitive choices between a certain
reward and a risky gamble with fully specified descriptions of
options on each trial, receiving trial-by-trial feedback can modulate
decision-makers’ weighting of objective probabilities and led to
choice behavior resembling that observed in experience-based risky
choices. This previous finding reveals that instantaneous feedback is
a critical component for decision making and could lead individuals
to underweight low probabilities. Our results from the risky hybrid
foraging task are in agreement with this previous finding.

The observed risk-averse foraging strategy may also be attributed
to how foragers subjectively code gains and losses in foraging tasks.
The distinction between gains and losses is typically based on a
decision-maker’s reference point (Trueblood et al., 2021; Tversky &
Kahneman, 1992). The value of a reference point can be affected by
many factors. For instance, Trueblood et al. (2021) showed that
when decision-makers chose between different types of saving
accounts, their optimistic beliefs about their future wealth could

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

76 LIU, WOLFE, AND TRUEBLOOD

https://doi.org/10.1037/xge0001652.supp
https://doi.org/10.1037/xge0001652.supp
https://doi.org/10.1037/xge0001652.supp
https://doi.org/10.1037/xge0001652.supp


result in the use of a positive-valued reference point. When the
expected return from a savings account is lower than their belief-
based reference point, decision-makers may perceive the return from
this account as a loss. In our hybrid foraging tasks, the set of targets
always included a sure target. This may lead foragers to anticipate a
positive return from a selection because they can always earn some
points by clicking on the sure target. As a result, foragers may adopt
a positive-valued reference point to interpret values they receive
while foraging. A zero-valued return in this circumstance would
always be interpreted as a loss. Since risky targets frequently yield
zero returns, foragers may perceive those targets as less valuable,
even though they may have an identical or even higher expected
value compared to other targets.
It is also possible that participants treat each target selection as a

single shot gamble. The risk-averse behavior of foragers in our task
might reflect the tendency to avoid risks when playing a single
gamble. It has been shown in Wulff et al.’s (2015) work that when
making risky choices in a single-play environment, decision-makers
tended to follow choice strategies aiming at maximizing the short-
term chance of winning rather than maximizing the long-term
expected return. In foraging tasks, participants can repeatedly select
the same targets. Thus, by the law of large numbers, there is much
less risk of receiving zero points across multiple selections of the
same risky target. Yet, people’s behavior does not reflect this fact,
suggesting they ignore the law of large numbers and behave as if
each target selection is a single gamble.

Constraints on Generality

The present study examined the role of risk sensitivity in hybrid
foraging in a sample primarily composed of Western adults. Since
existing literature documents varying abilities in both hybrid
foraging (e.g., Lloyd et al., 2023; Wiegand et al., 2019) and risky
choices (e.g., Levin et al., 2007) across the lifespan, our findings of a
risk-averse strategy in hybrid foraging may not generalize to all age
groups. Future studies could examine how risk sensitivity in hybrid
foraging differs across the lifespan using the current risky hybrid
foraging paradigm.
We note some additional limitations of our study. In our

experiments, we utilized simple visual representations (i.e., alphabetic
letters) as options to minimize potential visual confounds. Future
studies might want to employ stimuli involving more complicated
visual components (e.g., shape, color) to study risky hybrid foraging
behavior in more naturalistic, potentially ambiguous scenarios.
Additionally, due to the dynamic nature of hybrid foraging search
(i.e., targets are constantly moving and depleted with selection),
future studies could use touch-based tablets/trackpads to make
it easier to respond quickly (e.g., Á. Kristjánsson et al., 2014;
Thornton et al., 2021; Zhang et al., 2017).
Hybrid foraging is an essential task in various cognitive domains

(e.g., search in memory; Hills et al., 2012; Lundin et al., 2023; also
see Mehlhorn et al., 2015, for review). Despite many common
cognitive components shared in various domains, it is unclear to what
extent the currentfindingswould hold across different cognitive tasks.
Future studies may extend our understanding of the key principles of
hybrid foraging by investigating different cognitive tasks.
We also note that the present study only examined the effect of risk

on foraging behavior in the context of potential gains. However, in
real-world searching scenarios, people may also encounter potential

losses. For instance, when inspecting a house for purchase, people
have to consciously search for possible damage in different rooms.
We do not know whether our conclusions generalize to the context
of potential losses. We suspect that framing effects (Tversky &
Kahneman, 1981) may result in a different risk-sensitive foraging
strategy in the context of losses, but future studies are needed to fully
investigate this possibility. Moreover, the present study did not
penalize selection of distractors. In reality, the error of collecting a
poisonous mushroom can lead to fatal consequences. Other types of
risk can arise as a consequence of selecting nontargets (e.g., predation
risk; Thornton et al., 2021). It would be worth investigating how
different types of risks interactively shape foraging strategies in
hybrid foraging in future studies. Finally, the present study does not
impose any limits on foraging time in patches, which is an important
factor in shaping both foraging behavior (T. Kristjánsson et al., 2018)
and risky choices (Edland & Svenson, 1993). Future studies may
examine if the current findings can be generalized to time-limited
situations.

Conclusion

To summarize, the present study investigated the interplay of
outcome uncertainty, expected value of reward, and prevalence of
target types on foraging behavior in hybrid foraging and found
robust evidence for risk-sensitive foraging behavior. Our findings
highlight the crucial role of outcome uncertainty in nonexhaustive
hybrid foraging and reveal complex interactions between decision
making and visual search processes. Inspired by findings from both
human decision making and visual search, we propose potential
cognitive processes that may lead to the observed risk-sensitive
foraging behavior. Future investigations are needed to test those
hypotheses and explore other potential mechanisms responsible for
the emergence of risk-sensitive behavior in hybrid foraging.
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