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In hybrid search, observers search visual arrays for any
of several target types held in memory. The key finding
in hybrid search is that response times (RTs) increase as
a linear function of the number of items in a display
(visual set size), but RTs increase linearly with the log of
the memory set size. Previous experiments have shown
this result for specific targets (find exactly this picture of
a boot on a blank background) and for broad categorical
targets (find any animal). Arguably, these are rather
unnatural situations. In the real world, objects are parts
of scenes and are seen from multiple viewpoints. The
present experiments generalize the hybrid search
findings to scenes (Experiment 1) and multiple
viewpoints (Experiment 2). The results replicated the
basic pattern of hybrid search results: RTs increased
logarithmically with the number of scene
photos/categories held in memory. Experiment 3
controls the experiment for which viewpoints were seen
in an initial learning phase. The results replicate the
findings of Experiment 2. Experiment 4 compares hybrid
search for specific viewpoints, variable viewpoints, and
categorical targets. Search difficulty increases from
specific viewpoints to variable viewpoints and then to
categorical targets. The results of the four experiments
show the generality of logarithmic search through
memory in hybrid search.

Introduction

In standard visual search, observers search for a
target in visual displays containing distractor items
(Wolfe, 2020). In “hybrid search,” observers search the
visual display (e.g., the shelves in the supermarket) for
a set of possible targets held in memory (e.g., your

shopping list). This is known as “hybrid search”because
it combines visual and memory search (Schneider &
Shiffrin, 1977; Wolfe, 2012). It is a typical type of search
task encountered in daily life. To investigate hybrid
visual and memory search behavior in the laboratory,
Wolfe (2012) asked human observers to memorize 1,
2, 4, 8, 16, or even 100 objects (memory set) prior to
search. To confirm that these objects had been firmly
stored in their memory, observers completed a simple
“old” or “new” memory recognition test. Next, the
observers performed repeated trials of visual search
through displays consisting of either 1, 2, 4, 8, or 16
photographs of objects (visual set). The observers’ task
was to identify if one of the objects in the memory set
was present in the search display. The results showed
that the search response times (RTs) were a linear
function of the number of objects displayed in visual
search and a logarithmic function of the number of
objects held in memory. Cunningham and Wolfe (2014)
offer a model that interprets the basic mechanism of
the interaction between visual and memory search: An
object in the visual display is selected. In the Wolfe
(2012) experiment, with a diverse set of target objects,
this visual selection will be essentially random (Wolfe,
2021). That selected item will be compared against
the set of target objects held in memory (“memory
search”). If it does not match any of them, a new
item will be selected. This process will repeat until
the selected object matches one of the targets or the
search is terminated with a “target absent” response.
The time required for each memory search will be a log
function of the number of items held in memory. Why
is the function logarithmic? One appealing thought is
that search through memory is like the child’s game
of guessing a number between 1 and N. A young
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child will ask, “Is it 1? Is it 2?” and so on; reaching
the correct answer in an average of (N + 1)/2 steps. A
wiser child will learn a set partitioning strategy: “Is it
bigger than N/2? If no, is it bigger than N/4?” and so
on, a strategy that requires log2(N) steps on average. It
is difficult to see how that would be implemented in a
memory search. A more plausible hypothesis sees the
logarithmic function as a by-product of the mechanics
of Ratcliff’s diffusion model of recognition (Ratcliff,
1978) or related models. In these models, information
about an item accumulates at some rate toward an
identification threshold. That threshold should be set to
a level that allows for recognition as quickly as possible
but not so quickly that a noisy accumulation process
will produce a false-positive (false alarm) response.
If the target can be any of N items in a memory set,
one can imagine N diffusion processes accumulating
information. The chance of a false positive will go up
because each diffuser has some chance of producing a
false positive. Accordingly, the recognition threshold
should be moved to a higher level if one wishes to avoid
an increase in false positives. At a constant average rate
of information accumulation, it takes longer to reach a
higher threshold. Leite and Ratcliff (2010) have shown
that, if the false-positive rate is held constant, response
times will increase logarithmically with the number of
diffusers. This seems like a plausible account for the
basic hybrid search results.

The basic RT pattern of hybrid search has been
replicated in a variety of follow-up experiments.
Boettcher and Wolfe (2015) used words instead of
objects to comprise the visual and memory set; the
results showed that the RTs still increased linearly with
the number of the words presented in the visual search
array and logarithmically (albeit noisily) with the length
of the word list memorized by the observers prior to
search. Interestingly, even though the memory set was
a grammatically and syntactically well-formed phrase
with a clear word order (e.g., “London Bridge is falling
down”), search RTs were still logarithmically related to
the size of the memory set. No reliable serial-position
memory effects of words order were apparent. By
manipulating the frequency and recency of object items’
appearance in the task, Wolfe et al. (2015) demonstrated
that the relative familiarity of the targets and distractors
did not influence observers’ performance on hybrid
search. Cunningham and Wolfe (2014) used object
categories (e.g., plants, cars, animals, clothing), and
observers searched photographic representations of
specific objects looking for members of any of the
object categories. This categorical search was more
difficult than a search for a set of specific objects,
so the RTs were overall longer than the equivalent
conditions using specific items in Wolfe (2012). Even so,
memory search remained logarithmic, and visual search
remained linear. This finding indicates that the hybrid
search rule is not dependent on the use of specific items.

Other research has investigated the role of memory
in hybrid search. Drew, Boettcher, and Wolfe (2016)
conducted a series of experiments to test the hypothesis
that visual working memory hosted the search templates
of the memory set in hybrid search. They asked
participants to perform hybrid search and visual
working memory tasks at the same time. For example,
trials of an ongoing hybrid search were interleaved with
trials of a working memory change detection task.
Drew et al. (2016) found the additional visual working
memory tasks produced little or no interference on
the hybrid search. They concluded that the search
templates do not reside in visual working memory.
In any case, given that working memory capacity is
profoundly limited (7 ± 2 or 4 ± 2; Cowan, 2001), it
would be implausible that the large numbers of targets
(100 in Wolfe’s [2012] second experiment) could reside
in working memory. Drew et al. (2016) proposed that
the memory set of hybrid search is held in an activated
long-term memory (ALTM). ALTM is defined as a
portion of long-term memory that can be relevant to
the current task (Cowan, 1988).

In the real world, stimuli are not generally seen in
just one pose or isolated on a uniform ground. We
typically encounter stimuli in continuous scenes and
from multiple viewpoints. If, as discussed before, the
logarithmic RT functions of hybrid search arise from
the mechanics of a diffusion model, one could imagine
that less constrained stimuli might not reproduce the
standard hybrid results. For instance, consider objects
that can vary in their viewpoint. Is a left-facing cow
identified by the same diffusion process as the same
cow, facing down and to the right? Do different items
demand dramatically different numbers of diffusers in
order to tolerate variations in viewpoint or is the same
fixed cost to allow for viewpoint variation? One could
imagine responses to viewpoint variation that would
disrupt the standard logarithmic funding. Similarly,
identification of scenes might rely on multiple diffusers.
Perhaps multiple objects need to be identified in each
scene, making a search through scenes something of a
hybrid, hybrid search. Again, this could alter the log
function.

Here we present the results of hybrid search for
scenes (Experiment 1) and viewpoint-varying objects
(Experiments 2–4) that indicate the basic hybrid result
is robust in the face of these concerns. However, it
is that we recognize scenes or deal with viewpoint
changes, and those processes continue to generate
logarithmic RT × memory set size functions. Different
types of stimuli vary in their mean RT with scenes and
viewpoint variable stimuli being slower than simple
single objects and faster than broad categories, but the
qualitative pattern of results remains similar across
stimulus sets. Experiment 1 makes this point for scenes.
In Experiment 2, we asked if hybrid search changes
if targets can be presented in variable viewpoints
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compared to search for targets presented from a single
viewpoint. While we found that single-viewpoint search
is more efficient than variable-viewpoint search, we
continued to find the logarithmic function with a
change in memory set size. In Experiment 2, observers
were initially exposed to objects in a single pose. In
Experiment 3, targets were rotated in the learning phase
so that participants were exposed to all viewpoints
before starting the search trials. The findings from
Experiment 2 were replicated. To further compare
object, viewpoint, and category search in a fair manner,
Experiment 4 ran an “all-in-one” experiment with
a single set of stimuli and found that the search
difficulty increased from specific viewpoints to variable
viewpoints to categorical targets. Again, while the
results of these experiments show that search may be
easier or harder with different types of stimuli, the basic
pattern of a linear search through the visual display and
a logarithmic search through the memory set appear to
apply generally.

Experiment 1—hybrid search for
scenes

Experiment 1 asks whether hybrid search for scenes
obeys the same rules as hybrid search for objects. If
hybrid search RTs are based on the number of “objects”
in memory, scenes could perform differently, given that
there is no good way to count the objects in a scene
(Wolfe, Alvarez, Rosenholtz, Kuzmova, & Sherman,
2011). Adapting the basic hybrid search paradigm,
our experiment had two conditions: scene-specific
and scene-categorical. In the scene-specific condition,
several specific scene photographs constituted the
memory set, serving as the target candidates. In the
scene-categorical condition, the memory set was
composed of several names of scene categories. The
visual display in both conditions consisted of a set of
nontarget scenes (distractors) with one target scene
always present. The visual set sizes varied from trial
to trial. In both conditions, the participants’ task
was to localize the target scene photo in the display.
Moreover, we wanted to compare the search efficiency
between these two conditions. Cunningham and Wolfe
(2014) compared their object-categorical search data
(Experiment 2) with Wolfe’s (2012) object-specific data
(Experiment 3). They found that the search for one
member of a multiple-category memory set was much
harder than the search for one member of a set of
specific targets. We ask if the situation would be the
same for scene stimuli. Is scene-categorical search much
harder than scene-specific search? We also compare our
scene-specific data to Wolfe’s (2012) object-specific data
and our scene-categorical data to Cunningham and

Wolfe’s (2014) object-categorical data. Though there are
limitations to comparing across experiments and across
observers, these comparisons could tell us whether
scene search or object search are qualitatively different.

Methods

Participants
Twelve observers participated in this experiment.

They were fluent speakers and readers of English. All
of them had either normal or corrected-to-normal
vision. Before the experiment, all of them gave informed
consent and had passed the Ishihara Color Test.
However, due to technical problems with the testing
computer, we had to exclude one participant (female,
29) from the data analyses because not all candidate
categories were presented during search and certain
categories had come up more than once as targets in
her scene-categorical search condition. Thus, there were
11 valid data sets for analysis. These data sets were from
two male participants and nine female participants. The
age range was from 18 to 51 years, with an average
of 29.3 (SD = 8.96). Sample size was based on Wolfe
(2012), where 10 Os were tested. The main hybrid
search results are very robust and can be established
with relatively modest sample sizes.

Materials and apparatus
For the scene-categorical condition, 15 categories

were chosen from the SUN Database (Xiao, Hays,
Ehinger, Oliva, & Torralba, 2010). These categories
were amusement park, bathroom, beach, bedroom,
bridge, cemetery, city street, kitchen, mountain,
restaurant, stadium, staircase, swimming pool, theater,
and waterfall. Each category contained a minimum
of 150 scene photographs and an average of 175
photographs. In the SUN Database, all scene categories
are hierarchically arranged into three levels. Most
categories in our experiment were selected from the
basic level (the third level). Every category in this
level has its clear and unique definition based on
WordNet (Fellbaum, 2010; Miller, 1995). For example,
“restaurant” is defined as “a room where waiters
serve meals to customers.” Therefore, every category
is distinguishable from one another. Even so, some of
the SUN categories are easily confused with each other,
for instance, “waterfall block,” “waterfall cascade,”
and “waterfall cataract.” In these cases, we created
a broader “superordinate” category for them: in this
case, “Waterfall.” For each of our 15 categories, we
screened all photos in each category individually, in
order to make certain that no image could be potentially
classified into an incorrect category. In the end, we
had a total of 2,618 scene photographs as stimuli.
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Figure 1. Visual search display. An example for the three visual set sizes.

The smallest category (“amusement park”) had 153
exemplars, and the largest (“staircase”) had 193.

Each category could be used once and only
once as a member of the target memory set in the
scene-categorical condition. Thus, no category was
used as a target in more than one search block. After
the target categories were chosen for the search block,
scene photographs from the remaining categories were
pooled together and the distractors were randomly
picked from that superset. For the scene-specific
condition, the same 2,618 scene photographs were
used as the stimulus pool, except that they were not
treated as members of any categories. Fifteen unique
scene photographs were randomly chosen to make up
memory target sets for each observer, and distractors
were once again randomly picked among the rest. The
experimental sessions were coded inMATLAB software
using the Psychophysics Toolbox (Brainard, 1997) and
carried out on a Macintosh G4 computer. Stimuli
were presented on a 20-in. CRT monitor (Mitsubishi
Diamond Pro 91TXM). The resolution of the display
was set to 1,280 * 960 pixels and an 85 Hz refresh rate.
Participants were seated so that their eyes were 57.4
cm from the monitor. At this viewing distance, 1 cm
subtended 1° of visual angle.

Both scene-specific and scene-categorical conditions
consisted of four search blocks. Each block had one of
the four memory set sizes: 1, 2, 4, and 8. Each block
consisted of 144 visual search trials. On each trial,
two, four, or eight scene photographs appeared as the
visual search display. Scene photographs were placed
equally distant from each other on an invisible circle
with a radius of 10.2 degrees at an approximate viewing
distance of 57.4 cm (see Figure 1). Within every block,
each visual set size showed up 48 times in random
order.

For the scene-specific condition, targets were
presented as individual photographs one at a time
prior to the start of a block of search trials. For the
scene-categorical search condition, target categories
were defined by words on the monitor screen, naming
each scene category. After the target set was presented,

observers needed to pass a memory test before
moving on to the visual search. In the memory test,
observers judged if a scene image was “old” or “new”
by pressing corresponding keys as a response. Scene
images from the memory sets were presented one at
a time, for 3 s each. Images used as scene exemplars
in the category condition and as distractors in either
condition during the memory test were not used as
stimuli in the subsequent visual search trials. For the
scene-specific condition, “old” meant the testing image
was one of the targets, and “new” meant it was not,
while for the scene-categorical condition, “old” meant
that the testing image belonged to any of the target
categories in the memory set, and “new” meant it did
not. The number of memory test trials was twice the
memory set size for that block (50% “old,” 50% “new”).
Participants need to perform at 90% accuracy or better,
twice in a row, in order to pass the memory test and
to be qualified for the search task. In practice, the
average number of blocks required varied between 2
(the minimum possible) and 3.5 for different memory
set sizes for specific scenes and from 2.2 to 3.2 for
categorical scenes. As a comparison, the memory test
for objects in the original hybrid search study required
between 2.7 and 3.4 repetitions for memory set sizes
between 2 and 16 (Wolfe, 2012).

Participants performed a localization task on the
visual search trials. There was one and only one target
on each search trial. Using a localization task, with
100% target-present trials, reduces error rates and
thus reduces speed–accuracy trade-offs in a study
where RTs are the measure of greatest interest. For
instance, Experiment 2 in Cunningham and Wolfe
(2014) used this method and produced similar RT
patterns to a present/absent hybrid search task but
with lower error rates. The participants were asked to
make a response by clicking the photograph on the
screen with a computer mouse. If the wrong photo
was clicked, a warning audio feedback would be
given, and this prompted the observers to continue
searching until they produced the correct answer. The
current trial would not be terminated until the correct
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photograph was clicked. The number of any clicks
before the correct response was recorded as “bad
click” counts for that trial, and the trial was noted as
an “error trial.” All eight search blocks (four scene-
specific plus four scene-categorical) were presented
in pseudo-random order, counterbalanced across
participants.

Results

In each condition of the current experiment (scene-
specific and scene-categorical search), participants were
tested on 576 trials, and 11 valid participants’ data sets
were analyzed. There were 12 different combinations of
visual set size (VisSS) and memory set size (MemSS) for
each condition. Each combination had 48 trials.

Scene-specific search
To “clean” the data, any trials labeled as “bad

clicks” were regarded as error trials and excluded
from further analyses. The bad click exclusion rate
was 2.9% (182 out of 6,336 trials). The bad click
exclusion rate was lowest at VisSS 4/MemSS 2 (1.5%)
and highest at VisSS 2/MemSS 4 (3.9%). A two-way
repeated-measures analysis of variance (ANOVA)
on the arcsine-transformed error rates revealed main
effects of visual set size, F(2, 20) = 5.55, p < 0.05, η2

p
= 0.36, but no main effect of memory set size, F(3,
30) = 0.98, p = 0.41, η2

p = 0.09, or the interaction
between memory set size and visual set size, F(6, 60)
= 0.62, p = 0.71, η2

p = 0.06. In addition, trials with
RTs less than 200 ms or larger than 4,300 ms (3 SD
from the mean) were excluded as outliers (0.19% of
trials).

We performed a two-way repeated-measures ANOVA
on the RTs for the remaining trials. Both of the main
effects, VisSS and MemSS, were significant: F(2, 20) =
268.34, p < 0.001, η2

p = 0.96 for VisSS and F(3, 30) =
41.48, p < 0.001, η2

p = 0.81 for MemSS. We also found
a significant VisSS * MemSS interaction effect, F(6, 60)
= 34.96, p < 0.001, η2

p = 0.78. As we can see in Figure
2, plotting the RTs against VisSS, RT increased linearly
for each of the memory set sizes. Figure 3a shows
that the effect of MemSS on the RTs seemed to be
logarithmic. Each VisSS line in Figure 3a is curvilinear.
In order to test the hypothesis that the logarithmic
model fits better than a linear model, we performed
linear regression tests on both RT * MemSS and RT
* log2(MemSS) functions. The test of RT * MemSS
produced R2 = 0.90, 0.81, and 0.82 for VisSS of 2,
4, and 8, respectively, while the loglinear regression
produced higher R2 values: 0.99, 0.97, and 0.97. The
regression tests suggested a more convincing linear
relationship between the RTs and the log2(MemSS)

Figure 2. Reaction time as a function of visual set size for the
specific (A) and categorical scene (B) conditions in
Experiment 1. Error bars, where visible, are ± 1 SEM.

than between RT and MemSS. We also compared the
hybrid scene-specific search data with the object-specific
data from Wolfe (2012) (Experiment 3, also localization
task). The RT × VisSS slopes for scene-specific search
were 36 ms/item, 106 ms/item, 129 ms/item, and
165 ms/item for MemSS 1, 2, 4, and 8, respectively.
Correspondingly, slopes for specific object search in
Wolfe (2012) were 17 ms/item, 49 ms/item, 77 ms/item,
and 91 ms/item. It is somewhat perilous to compare
across experiments. However, the search for specific
objects appears to be about twice as efficient as the
search for specific scenes.

Scene-categorical search
As in the specific condition, any response labeled as a

“bad click” was regarded as an error trial and excluded
from further analyses. This made the error rate 3.3%
(212 out of 6,336 trials). A two-way repeated-measures
ANOVA on the arcsine-transformed error rates revealed
no main effects of visual set size, F(2, 20) = 2.57,
p = 0.10, η2

p = 0.20, or the memory set size, F(3, 30)
= 0.47, p = 0.70, η2

p = 0.05. The error rates in all 12
VisSS/MemSS combinations varied but not in the same
manner as in Experiment 2 of Cunningham and Wolfe
(2014). In that study, low VisSS/MemSS produced a
low error rate while higher VisSS/MemSS produced a
higher error rate. Here, the lowest rate of 2.1% was at
VisSS 4/MemSS 2 and the highest rate of 4.4% was at
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Figure 3. Reaction time as a function of memory set size for the specific (A, C) and categorical conditions in Experiment 1 (B, D). A and
B show results for Experiment 1 on a linear x-axis. C and D use a logarithmic x-axis. Error bars are ± 1 SEM. The dotted line shows a
best-fit line through the Vss 8 data for memSS 1, 2, and 4. The red arrow indicates the magnitude of the difference between the
extrapolation to MemSS 8 as in Wolfe (2012).

VisSS 8/MemSS 2. The error rate here was much smaller
than the object-categorical search of Cunningham and
Wolfe (2014). People tended to be faster at finding
objects than finding scenes (see below), but they also
made more mistakes. In addition, trials with RTs less
than 200 ms or larger than 7,300 ms (3 SD from the
mean) were excluded as outliers (0.68%).

For the remaining trials, a two-way ANOVA on
the RTs showed both main effect of VisSS, F(2, 20)
= 236.84, p < 0.001, η2

p = 0.96 (Figure 2B), and
main effect of MemSS, F(3, 30) = 32.05, p < 0.001,
η2
p = 0.76 (Figure 3B). There was also a significant

interaction between these two, F(6, 60) = 14.68,
p < 0.001, η2

p = 0.60. As we can see by plotting the
RTs against VisSS in Figure 2B, each MemSS line
increased linearly. The effect of MemSS on the RTs
seemed to again produce logarithmic or, at least,
curvilinear functions (Figure 3B). In order to compare
linear to logarithmic models for MemSS functions, we
performed linear regressions on both RT × MemSS and

RT × log2(MemSS) functions. The regressions on RT
× MemSS produced 0.72, 0.69, and 0.61 R2 for VisSS 2,
4, and 8, respectively, while for the RT × log2(MemSS),
the R2 reached markedly higher values (0.93, 0.91,
and 0.85). As with object categories (Cunningham &
Wolfe, 2014), the logarithmical relationship between
the MemSS and the RTs is the better fit for the RT ×
MemSS functions.

We compared the slopes of the VisSS scene
category functions with the comparable slopes for
object categories in Cunningham and Wolfe (2014),
Experiment 2 (note that there was no VisSS 2 in
the object-categorical search). The slopes for the
Cunningham and Wolfe (2014) object data were
67 ms/item, 90 ms/item, 109 ms/item, and 125 ms/item
for MemSS 2 to 8, respectively. The slopes for the
scene category data, described here, were 120 ms/item,
222 ms/item, 234 ms/item, and 250 ms/item. As with
specific items, categorical object search is about two
times more efficient than categorical scene search.
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Discussion

The results of Experiment 1 show that hybrid search
for specific scene targets produces RTs that are a linear
function of the visual set size and an approximately
logarithmic function of the memory set size. The same
pattern is seen in hybrid search for scene categories.
Thus, scenes replicate the pattern of results shown
for photographs of specific objects, object categories,
alphanumeric characters, and English words or phrases
(Boettcher & Wolfe, 2015; Cunningham & Wolfe, 2014;
Wolfe, 2012). These results suggest that each scene in
the memory set was treated as a single “thing” and not
some ill-defined collection of objects for the purposes
of identification in the search task. The scene searches
were less efficient than the equivalent object searches
from previously reported studies. Not too much should
be made of this comparison since it could reflect
differences in low-level properties of the stimuli (e.g.,
more self-crowding in the scenes) or high-level factors
like some fundamental difference in the recognition of
scenes versus objects. It might be hard to disentangle
these factors, although some progress might be made
by doing an experiment in which Os searched for object
targets embedded in scenes. Such a “Where’s Waldo”
style of hybrid search experiment would seem to require
a carefully constructed stimulus set that does not
currently exist.

Experiment 2—hybrid search for
variable viewpoint

In prior work on hybrid search with objects,
observers have searched for either an exact copy of a
target object (find this picture of this exact chair) or
an object in a target category (find any chair). These
conditions could be seen to miss the most common
class of real-world object search. In the real world,
one would most typically search for a specific object,
but one that could be encountered from multiple
positions/angles. If you need to find your cellphone,
your memory set needs to account for the fact that it
can be in an arbitrary orientation in three-dimensional
space when you encounter it. These searches for
targets that can appear from different viewpoints lie
between search for just one view and search for a
category. Is variable-viewpoint hybrid search similar
to single-viewpoint search? This might be the case if
suggesting that search templates are independent of
viewpoint (see Biederman & Gerhardstein, 1995; Tarr
& Bulthoff, 1995). Alternatively, is variable-viewpoint
search like a category search where multiple views
behave like multiple instances of a category? To test
this, we conducted a hybrid search experiment using

specific target objects that could be rendered in multiple
viewpoints. We compare this variable-viewpoint
condition to a single-viewpoint condition, in which
each target appeared in only a single pose.

Methods

Participants
Fourteen observers (mean age = 26.2 years, SD =

6.7, 11 females) participated in this experiment. All of
them had either normal or corrected-to-normal vision.
All observers gave informed consent and were paid
$10 per hour for their time. Again, sample size was
taken from Wolfe (2012) with a few extra observers in
case an observer needed to be removed from analysis.

Materials and apparatus
For the viewpoint hybrid search condition, objects

with variable viewpoints are needed. We used ShapeNet
(Chang et al., 2015), which is a large-scale repository of
three-dimensional CAD models of objects, to generate
multiple viewpoints for each three-dimensional object
model. We rotated each three-dimensional model along
the x (pitch angle −30:10:30) and y (−80:10:80) axes, as
illustrated in Figure 4. This produced 119 viewpoints
for each object. The canonical viewpoint was always
designated to be the three-dimensional object model
rendered with pitch = 20 degrees and yaw = −30
degrees, relative to a frontal view. ShapeNet Viewer
(Version 0.1.0) was used to render different viewpoints
of 622 three-dimensional object models. These were
selected from 25 categories in ShapeNetCore.v1.
The 25 categories were airplane, animal, bag, bed,
birdhouse, camera, cap, car, chair, clock, dresser,
earphone, guitar, gun, helmet, mailbox, motorcycle,
piano, pillow, printer, ship, shoes, sofa, statue, and
table. These categories were selected to avoid semantic
overlap between categories (e.g., many “toys” can
be easily confused with “animals,” so that category
was excluded). The number of three-dimensional
models for each category ranges from 10 to 43. To
ensure distinguishability within a category (e.g., a
white pillow without any pattern would be a “bad”
target/distractor), some three-dimensional models were
discarded if they had an excessively plain texture by
visual inspection. We have shared the stimuli on Google
Drive for reproducibility (https://drive.google.com/file/
d/1sxaFCObkkqpQ_8MJ2GRLBqHlKFhDLULM/
view?usp=share_link). This process yielded 74,018
images in total. An example is shown in Figure 4.

Experiments were written in MATLAB using the
Psychophysics Toolbox (Version 3; Brainard, 1997).
Stimuli were presented on a 20-in. monitor with
resolution set to 1,280 * 960 pixels and refresh rate set
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Figure 4. An example of a chair with a variable set of viewpoints generated.

Figure 5. Example stimuli with visual set size 16. The target is a specific chair in any viewpoint; the green rectangle was only shown
during feedback.

to 85 Hz. Observers searched visual displays of 4, 8, or
16 photographs of objects for any of 2, 4, 8, or 16 items
held in memory. Example stimuli are shown in Figure 5.
Every observer was tested on all four memory set sizes
over four blocks of trials. At the start of each memory
block, the objects in the memory set were presented
to the observer. Observers then took a memory test
in which they identified pictures of objects as being
in or out of the memory set. Observers passed the
memory test by scoring over 90% correct. Objects used
in the memory test were not used in the subsequent
visual search trials. Having passed the memory test,
observers searched visual displays where one, and only
one, of the items in the display was a target, drawn
at random from the different viewpoints created for
specific target objects. Distractors were drawn from
all of the remaining nontarget sets. Different views of

the targets could not appear as distractors. There were
20 practice trials, followed by 300 experimental trials,
evenly divided between target-present and target-absent
trials and between three visual set sizes: 4, 8, and 16
items. Observers were instructed to indicate whether
the target was present or absent with key press as
quickly and accurately as possible. The response keys
are defined by the Os’ choice. At the start of a session,
the experiment program asks the participant to press
one key for “PRESENT” responses and another key for
“ABSENT” responses. The same process was repeated
for each of the four memory set sizes. As a replication
of Wolfe (2012), we also performed each of the blocks
in the experiment using just a single viewpoint for
each of the targets in the memory set. We used the
present/absent method, rather than the localization
method of Experiment 1, because we were replicating
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the main experiment of Wolfe (2012). The experiment
order was pseudorandomized between four memory set
sizes and two conditions (variable vs. single viewpoint)
among participants.

Results

The data of participants whose average error rate was
more than 20% were excluded from further analysis,
leaving a total of 12 participants. The error rates of the
two excluded observers were 32.8% and 40.2% (SD =
9.8%), respectively. The average error rate for these 12
participants was 6.8% (range from 5.5%–18.7% with
an SD of 3.7%). All error trials were removed from
the subsequent RT analysis. In addition, trials with
RTs less than 200 ms or larger than 15,000 ms were
excluded as outliers (0.12%). A paired sample t test on
arcsine-transformed error rates revealed a higher error
rate of the viewpoint condition (mean error rate =
8.6%) (miss rate = 10.7%, false alarm = 5.17%) than the
single-view condition (mean error rate = 5.9%), t(11) =
−5.4, p < 0.001.

First, we assess the effect of viewpoint on miss
error rates and RTs. A paired sample t test on
arcsine-transformed error rates shows that the average
miss rate for negative pitch angle (−30, −20, −10,
M = 12.0%) is higher than that for positive pitch
(10, 20, 30, M = 9.5%), t(11) = 4.23, p < 0.01. This
may be related to the relative visibility of critical
object-identifying features in different rotation angles.
A one-way ANOVA showed no main effect of yaw
angles on miss rate (F(16, 187) = 1.50, p = 0.096, η2 =
0.12). With reference to the example in Figure 4, the
views with negative pitch angle and large or zero yaw
angles are further away from the canonical view (the
viewpoint that maximizes the amount of information
about an object; Palmer, 1981), which may contribute
to the large miss rate of those viewpoints. One possible

way to measure the difference of one view with the
canonical view is a similarity metric in convolutional
neural network (CNN) features, but it is out of the
scope of the current study. While there is an effect of
viewpoints angle on error rate, there is no effect on RTs
(all ps > 0.05).

Figure 6 shows mean RTs on target-present trials as a
function of visual set size, for each of the four memory
set sizes. It is clear that the effects of visual set size were
quite linear, as is typical in the search for one object
among many (Vickery, King, & Jiang, 2005). A similar
effect occurred for the target-absent trials (Figure 7) but
with higher slopes.

We conducted a three-way, repeated-measures
ANOVA on target-present RTs using condition (single
vs. variable viewpoint), visual set size, and memory set
size as factors. All three main effects were significant:
condition, F(1,11) = 29.56, p < 0.001, η2

p = 0.73; visual
set size, F(2, 22) = 102.98, p < 0.001, η2

p = 0.90; and
memory set size, F(3, 33) = 96.52, p < 0.001, η2

p = 0.90.
All the two-way interactions were significant: visual set
size and condition, F(2, 22) = 16.59, p = 0.001, η2

p =
0.60; memory set size and condition, F(3, 33) = 5.52,
p < 0.01, η2

p = 0.33; and visual set size and memory set
size, F(6, 66) = 50.39, p < 0.001, η2

p = 0.82. Finally, the
three-way interaction between visual set size, memory
set size, and condition was also significant, F(6, 66) =
4.13, p < 0.05, η2

p = 0.27.
A similar pattern was seen in target-absent trials.

However, there was no interaction between visual
set size and condition, nor was there a three-way
interaction between visual set size, memory set size, and
condition. A three-way, repeated-measures ANOVA
conducted on target-absent RTs revealed main effects
of condition (single or variable), F(1, 11) = 27.82,
p < 0.001, η2

p = 0.72; visual set size, F(2, 22) = 92.78,
p < 0.001, η2

p = 0.89; memory set size, F(3, 33) = 90.06,

Figure 6. Reaction time on target-present trials as a function of visual set size in Experiment 2. (A) Data in single-viewpoints condition.
(B) Data from the variable-viewpoint conditions (error bars: ± 1 SEM).
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Figure 7. Reaction time on target-absent trials as a function of visual set size in Experiment 2. (A) Data in single-viewpoints condition.
(B) Data from the variable-viewpoint conditions (error bars: ± 1 SEM).

Figure 8. Reaction time on target-present trials as a function of memory set size. (A) Results on a linear x-axis. (B) Results on a
logarithmic x-axis. Variable-viewpoint conditions are in solid lines; single-viewpoint conditions are plotted with dotted lines (error
bars: ± 1 SEM).

p < 0.001, η2
p = 0.89; and significant interactions

between visual set size and condition, F(2, 22) = 20.61,
p < 0.001, η2

p = 0.65, and between visual set size and
memory set size, F(6, 66) = 44.55, p < 0.001, η2

p = 0.80.
Figure 8A shows mean RTs as a function of

memory set size. Note that the same RTs are plotted
in Figures 6 and 8, in one case as a function of
visual set size and in the other case as a function of
memory set size. While the effect of visual set size
on RT is basically linear in Figure 6, it is clear that
this is not the case for the effect of memory set size
where the functions in Figure 8A are curvilinear.
Figure 8B replots the data on a logarithmic x-axis,
showing that RT × log2(memory set size) functions

are essentially linear. Linear regression on the RT
× memory set size functions produces R2 values of
0.75–0.98. Linear regression of RT × log2(memory set
size) produces higher R2 in all cases: 0.94–1.00. Error
rates are larger at the larger set sizes, possibly reflecting
some speed–accuracy trade-off, but overall, there is
a convincingly linear relationship between RT and
log2(memory set size).

Recall that the starting question for this experiment
is whether searching for targets that can vary in
their viewpoint is the same as searching for a single
viewpoint. Figure 9 indicates that the single and
variable conditions are similar for one or two targets.
However, as the memory set size gets larger, search
becomes less efficient. This indicates that the memory
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Figure 9. Slopes of RT × visual set size functions as a function of memory set size for single and variable-viewpoint conditions: (A)
target present and (B) target absent (error bars: ± 1 SEM).

search, required each time a visual item is selected, is
slower for variable viewpoints. One thing to note is
that the lines in Figure 9 are connected lines. Each
data point represents a slope value (y-axis) of RT ×
visual set size functions for four memory set sizes
(x-axis). For Memory set size 2, there is no difference
between conditions (variable: 33 ms/item; single: 38
ms/item; t(11) = 0.88, p = 0.40). There is a numerical
difference for four targets (82 vs. 69 ms/item), but it
is not statistically significant (t(11) = 1.09, p = 0.30).
For the larger set sizes, the differences are significant
(memory set size 8; 127 vs. 80 ms/item; t(11) = 4.63,
p < 0.001; memory set size 16; 150 vs. 103 ms/item;
t(11) = 3.36, p < 0.01). The variable slopes for
larger memory set sizes resemble a categorical search
slope (e.g., eight categorical targets: 125 ms/item;
Cunningham &Wolfe, 2014). Similar results were found
for the target-absent trials. This suggests that a small
number of viewpoint-independent representations
can be activated in hybrid search and can be checked
without much more effort than the representation
of a single view of a target. For larger memory sets,
the viewpoint-independent representations take more
time to examine. Experiment 3 examines two possible
contributions to these results.

Experiment 3—enhancing the
memory representation

Perhaps variable-viewpoint search was harder than
single-viewpoint search because we did not adequately
teach the Os about the different views of the targets
in the variable-viewpoint condition. Experiment 3
is a variant of Experiment 2, intended to test that
hypothesis by inducing the Os to more adequately
encode a variable-viewpoint template or representation
of the targets. In the variable-viewpoint condition

of Experiment 2, observers only saw the canonical
view of the targets during the initial memory session.
In Experiment 3, subjects were exposed to all 119
viewpoints in the learning phase before starting the
search trials. During the learning phase, only the targets
from the memory sets were presented and rotated in 119
viewpoints, one viewpoint at a time. Each viewpoint
was seen for approximately 80 ms, resulting in 10 s
of total exposure to each target object. The number
of memory test trials was still twice the memory set
size for that block (50% “old,” 50% “new”). A second
change involves the viewpoints of the distractors. For
the single-viewpoint condition in Experiment 2, all
distractors were presented from the “canonical” view.
In the variable-viewpoint condition, each distractor
could be presented in any of the possible viewpoints. In
Experiment 3, we equated the distractor sets in the two
conditions by allowing the full range of viewpoints for
distractors to be used in the single-viewpoint condition
as well. In this experiment, for simplicity, only two
memory set sizes (2, 8) and two visual set sizes (4, 16)
were tested. Obviously, this does not allow us to test the
shape of the RT × set size functions, but our interest
here is specifically in the difference between single-
and variable-viewpoint conditions. Eleven observers
participated in this experiment. All other experimental
conditions are the same as in Experiment 2.

Results

One participant whose average error rate was more
than 20% was excluded from further analysis, leaving
a total of 10 participants (mean age = 25.1 years,
SD = 8.0, seven females). The average error rate
was 7.9%, and these error trials were eliminated in
the subsequent RT analyses. In addition, trials with
RTs less than 200 ms or larger than 15,000 ms were
excluded as outliers (0.01%). A paired sample t test on
arcsine-transformed error rates revealed a higher miss
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Figure 10. Reaction time on target-present and target-absent trials as a function of visual set size in Experiment 3. (A) Target present.
(B) Target absent (error bars: ± 1 SEM).

rate for the variable-viewpoint condition (M = 9.0%)
than the single-viewpoint condition (M = 6.9%), t(9) =
−5.27, p < 0.001.

Figure 10 shows mean RTs on (a) target-present and
(b) target-absent trials as a function of visual set size,
for each of the two memory set sizes. Target-present
and target-absent results are similar with higher slopes
for the target-absent trials. We conducted a three-way,
repeated-measures ANOVA on target-present RTs with
condition (single vs. variable viewpoint), visual set size,
and memory set size as factors. All three main effects
were significant: condition, F(1, 9) = 23.73, p = 0.001,
η2
p = 0.73; visual set size, F(1, 9) = 44.29, p < 0.001, η2

p
= 0.83; and memory set size, F(1, 9) = 42.76, p < 0.001,
η2
p = 0.83. Significant two-way interactions were found

between visual set size and condition, F(1, 9) = 6.87,
p < 0.05, η2

p = 0.43, and visual set size and memory set
size, F(1, 9) = 22.45, p = 0.001, η2

p = 0.71. A similar
pattern was seen in target-absent trials, with the addition
of a significant two-way interaction between visual
set size and condition and of a significant three-way
interaction between visual set size, memory set size, and
condition. Specifically, a three-way, repeated-measures
ANOVA conducted on target-absent RTs revealed main
effects of condition (single or variable), F(1, 9) = 5.05,
p = 0.05, η2

p = 0.36; visual set size, F(1, 9) = 50.62, p <

0.001, η2
p = 0.85; memory set size, F(1, 9) = 42.55, p <

0.001, η2
p = 0.83; and significant interactions between

visual set size and condition, F(1, 9) = 5.27, p < 0.05,
η2
p = 0.37; between visual set size and memory set size,

F(1, 9) = 335.31, p < 0.001, η2
p = 0.80; and between

visual set size and condition, F(1, 9) = 5.27, p < 0.05,
η2
p = 0.37. Finally, the three-way interaction between

visual set size, memory set size, and condition was also
significant, F(1, 9) = 5.85, p < 0.05, η2

p = 0.39.
When the memory set size is 2, searching for

variable-viewpoint targets (42 ms/item) was again

just as fast as searching for single-viewpoint targets
(37 ms/item), t(9) = 0.70, p = 0.50. However, when
more targets (8) are stored in memory, searching
for variable-viewpoint targets (109 ms/item) was
significantly less efficient than searching for specific
viewpoints (86 ms/item), t(9) = 2.71, p < 0.05. A similar
effect was found for the target-absent trials. Thus, these
results replicate the findings of Experiment 2. There is
a cost to the use of variable-viewpoint targets, and that
cost is seen once more than a few targets are loaded
into the memory set.

Experiment 4—all-in-one hybrid
search

Experiments 2 and 3 show that variable-viewpoint
stimuli produce less efficient hybrid search once more
than one or two such stimuli are used as target items.
Are these variable-viewpoint targets behaving like
categories? From the vantage point of hybrid search, is
searching for your cat in any of its possible poses the
same as searching for the category of “cat”? In order to
assess this more directly, Experiment 4 compares hybrid
search for specific viewpoints, variable viewpoints, and
categorical targets, using the same set of stimuli as in
Experiments 2 and 3.

Methods

For simplicity, as in Experiment 3, only memory
set sizes of 2 and 8 and visual set sizes of 4 and 16
were used. In the categorical search condition, we
sampled target objects with replacement due to the
limited number of exemplars per category (this number
ranges from 10–43, as stated in Experiment 2). Previous
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Figure 11. Reaction time on target-present trials as a function of
visual set size in Experiment 4. Data in memory set size 8
condition are plotted with solid lines. Data from the memory
set size 2 conditions are plotted with dotted lines (error bars: ±
1 SEM).

research on the role of familiarity of targets and
distractors in hybrid search shows that such repetition
makes little difference in the results (Wolfe, Boettcher,
Josephs, Cunningham, & Drew, 2015). Similar RTs
were obtained when the familiarity of targets and
distractors was balanced and even in conditions where
some distractors were made to be more familiar than
the targets. Other experiment settings and apparatus
are the same as in Experiment 2. The six blocks
of Experiment 4 were run in pseudorandom order
and counterbalanced across participants. Observers
proceeded to the formal experiment after passing the
memory test. Accuracy feedback was provided to
observers after each search trial. Twelve observers
(mean age = 24.1 years, SD = 6.6, eight females)
participated in this experiment.

Results

One participant, whose average error rate was
more than 20% in a condition, was excluded from
further analysis, leaving a total of 11 participants. The
average error rate was 8.5%, and those error trials were
eliminated in the subsequent analysis. In addition,
trials with RTs less than 200 ms or larger than 15,000
ms were excluded as outliers (removing just 0.1%). A
paired sample t test on arcsine-transformed error rates
revealed higher error rates in the categorical (M =
9.8%) and variable-viewpoint conditions (M = 9.4%)
than in the single-viewpoint condition (M = 6.2%, both
ps < 0.05). There was no significant difference between
the errors for the categorical and the variable-viewpoint
conditions (p = 0.53).

The main results, shown in Figure 11, show
performance with variable-viewpoint stimuli to
lie between single-view and categorical stimuli. A
three-way, repeated-measures ANOVA conducted on
target-present RTs revealed main effects of condition
(single, variable, or categorical), F(2, 20) = 43.67
p < 0.001, η2

p = 0.81; memory set size, F(1, 10) = 71.78,
p < 0.001, η2

p = 0.88; visual set size, F(1, 10) = 120.21,
p < 0.001, η2

p = 0.92; and significant interactions
between visual set size and condition, F(2, 20) = 19.11,
p < 0.001, η2

p = 0.66, and visual set size and memory
set size, F(1, 10) = 212.62, p < 0.001, η2

p = 0.96. A
similar pattern was found with the target-absent RTs.
A three-way, repeated-measures ANOVA conducted on
target-absent RTs revealed main effects of condition,
F(2, 20) = 51.64 p < 0.001, η2

p = 0.84; memory set size,
F(1, 10) = 64.52, p < 0.001, η2

p = 0.87; visual set size,
F(1, 10) = 112.51, p < 0.001, η2

p = 0.92; and significant
interactions between visual set size and condition, F(2,

Figure 12. Slope of RT × visual set size functions for the different conditions of Experiment 4 at memory set sizes of 2 and 8.
(A) Target present. (B) Target absent (error bars: ± 1 SEM).
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20) = 27.07, p < 0.001, η2
p = 0.73, and visual set size

and memory set size, F(1, 10) =78.46, p < 0.001, η2
p =

0.89.
We further calculated RT × visual set size search

slopes for each target condition and for each memory
set size (Figure 12). We examined the interaction with
paired sample t tests. Figure 12 shows the slopes of
three conditions and two memory set sizes. Generally
speaking, search for categorical targets in memory is
less efficient than viewpoint variable targets, t(10) =
2.09, p < 0.05, and the specific viewpoint targets, t(10)
= 6.30, p < 0.001, in large memory set size 8. For small
memory set size 2, search for categorical targets in
memory is still less efficient than the specific viewpoint
targets, t(10) = 3.70, p < 0.01. But the search slope
between the categorical targets and variable-viewpoint
targets condition in small memory set size is statistically
nonsignificant. For target-absent trials, the search
slopes are shown to have significant differences among
all three conditions (all ps < 0.05).

The findings suggest that the search difficulty
is increasing from specific viewpoints to variable
viewpoints and then to categorical targets. This seems
reasonable if the time required to match a visual item to
a memory set item increases with the abstractness of the
memory set. Interestingly, one could imagine a different
outcome where it would be easier to determine that
an item in the world was, categorically, a cat than to
determine that it was my cat or my cat in a specific pose.
Perhaps we would see a different pattern of results in a
version of the task where targets were more ambiguous.
Regardless, the results suggest that we would see the
standard hybrid search pattern of results in all cases.

Discussion and conclusions

In the end, this is a rather simple story. The core
finding of hybrid search is that response times increase
linearly with increasing visual set size, but they increase
logarithmically with memory set size. If you want to
know if any of your friends are present at a party,
this logarithmic compression allows you to perform
that hybrid search in a reasonable amount of time.
At least that should be the case, as long as the hybrid
search results are generally true and not simply limited
to memory for specific pictures of specific objects in
specific poses. The central finding of this article is
that, when the stimuli sets were changed to scenes or
to objects with variable viewpoints, we still replicated
previous findings in hybrid search experiments. RTs
remained linear functions of visual set size and were
generally logarithmic functions of memory set size.
The results did not need to come out this way. We
presume that logarithmic RT × memory set size
functions are logarithmic because, as Leite and Ratcliff

(2010) propose, this is a consequence of trying to hold
false-positive errors roughly constant. If either scenes
or viewpoint variation jumbled the internal calculation
of “set size,” the results could have changed. In fact,
whatever the underlying cause of the log functions, it is
a very robust effect.

The effects of change in the hybrid task are seen
in the overall difficulty of the different tasks. It was
interesting to find that the search for photos of scenes
was surprisingly difficult in Experiment 1. One might
have predicted that scenes would support relatively
fast search, given, for example, that the gist of a
scene is extracted extremely fast (e.g., Thorpe, Fize, &
Marlot, 1996). Why, then, is hybrid search for scenes
less efficient than hybrid search for single objects?
This may reflect the difference between determining
general characteristics of a scene (indoor vs. outdoor,
navigable vs. not navigable; Greene & Oliva, 2009) and
determining that a visual scene matches a specific scene,
stored in memory. Imagine a brief view of a scene. In
a short amount of time, you could probably determine
that this was an enclosed indoor room. You might
recognize if it is a bedroom or an office. However, if
asked whether a specific bookshelf or a computer was
presented in the scene, you would need more time.

The role of clutter or crowding could be another
factor explaining why hybrid search for objects is
faster than hybrid search for scenes. An isolated single
letter or object may be quite easy to identify, even if
this item appears in the peripheral vision. However,
if the same item was flanked by additional items in
the periphery, it would become significantly harder
to recognize (Rosenholtz, Huang, & Ehinger, 2012).
The clutter of multiple complex scenes might slow
search. Moreover, in object search, target items have
unique outlines/shapes, whereas all scene images have
rectangular outlines. The present data are suggestive,
but testing these specific hypotheses would require
further experiments in the future. Again, note, however,
that these harder stimuli still produce standard hybrid
results.

In the real world, objects will appear from various
viewpoints. They will certainly not be limited to a
canonical view. When we search for an object, we
do not search for this exact image of an object; we
search for this object, which could be viewed from
various positions. The results of Experiments 2–4
tell us that hybrid search among different viewpoints
is slower and less efficient than search for single-
viewpoint targets even while those results replicate
the logarithmic relationship of RT to memory set
size. The difference between the efficiency of single-
versus variable-viewpoint hybrid search is significant
for large memory set sizes and less significant in small
set sizes. Large set sizes serve to magnify effects. In this
case, if every variable-viewpoint stimulus is a bit more
difficult to process, then a large visual set size serves to
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sum a collection of modest differences into one more
substantial difference.

Hybrid search for variable viewpoints is faster and
more efficient than categorical hybrid search, which
suggests recognition of different viewpoints requires
less time (or cognitive resources) than recognition
of category membership. It would be interesting to
determine if this is true in general or whether the level
of category (e.g., “intermediate level,” Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976; or “entry level,”
Jolicoeur, Gluck, & Kosslyn, 1984) makes a difference.

Ideally, if we want to ask about hybrid search in
the real world, it would be desirable to have observers
search for a memorized set of objects among other
objects in a real (or, at least, realistic) three-dimensional
scene. If one imagines any reasonably interesting set of
scenes, this is a daunting experiment to design because
of the strong constraints that the scene would place
upon the type, size, and viewpoint of the objects in
the scene (Kallmayer, Võ, & Draschkow, 2023; Vo &
Henderson, 2009). Still, it seems entirely likely, given
the present results and previous work on hybrid search,
that the basic hybrid search pattern would be seen with
these hypothetical stimuli as well.

Keywords: hybrid visual and memory search, scene,
viewpoint, category
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