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A Implementation Details of Six Psychophysics Experiments

Experiment 1: Curvature. This experiment is based on [19]. There were two conditions in this
experiment: 1. Searching for a straight line among curved lines (Figure 1A, left), and 2. Searching
for a curved line among straight lines (Figure 1A, right). The search image was 11.3 x 11.3 degrees
of visual angle (dva). Straight lines were 1.2 dva long and 0.18 dva wide. Curved lines were obtained
from an arc of a circle of 1 dva radius, the length of the segment was 1.3 dva, and the width was 0.18
dva. Targets and distractors were randomly placed in a 6 x 6 grid. Inside each of the grid cells, the
objects were randomly shifted so that they did not necessarily get placed at the center of the grid cell.
The target and distractors were presented in any of the four orientations: -45, 0, 45, and 90 degrees.
Three set sizes were used: 8, 16, and 32. There was a total of 90 experiment trials per condition,
equally distributed among each of the set sizes.

Experiment 2: Lighting Direction. This experiment is based on [10]. There were two conditions in
this experiment: 1. Searching for left-right luminance change among right-left luminance changes
(Figure 1B, left). 2. Searching for top-down luminance change among down-top luminance changes
(Figure 1B, right). The search image was 6.6 x 6.6 dva. The objects were circles with a radius of
1.04 dva. The luminance changes were brought upon by 16 different levels at an interval of 17 on a
dynamic range of [0, 255]. The intensity value for the background was 27. Targets and distractors
were randomly placed in a 4 x 4 grid. Inside each of the grid cells, the objects were randomly shifted.
Three set sizes were used: 1, 6, and 12. There was a total of 90 experiment trials per condition,
equally distributed among each of the set sizes.

Experiments 3-4: Intersection. This experiment is based on [17]. There were four different
conditions: 1. Searching for a cross among non-crosses (Figure 1C, left). 2. Searching for a
non-cross among crosses (Figure 1C, right). 3. Searching for an L among Ts (Figure 1D, left). 4.
Searching for a T among Ls (Figure 1D, right). Each of the objects was enclosed in a square of size
5.5 x 5.5 dva. The width of the individual lines used to make the object was 0.55 dva. Non-cross
objects were made from the same cross image by shifting one side of the horizontal line along the
vertical. The search image spanned 20.5 x 20.5 dva. The objects were randomly placed in a 3 x 3
grid. Inside each of the grid cells, the objects were randomly shifted. The target and distractors were
presented in any of the four orientations: 0, 90, 180, and 270 degrees. Three set sizes were used: 3, 6,
and 9. There was a total of 108 experiment trials per condition, equally distributed among each of the
set sizes.

Experiments 5-6: Orientation. This experiment is based on [18]. There were four different
conditions: 1. Searching for a vertical straight line among 20-degrees-tilted lines (Figure 1E, left). 2.
Searching for a 20-degree-tilted line among vertical straight lines (Figure 1E, right). 3. Searching for
a 20-degree tilted line among tilted lines of angles -80, -60, -40, -20, 0, 40, 60, 80 (Figure 1F, left).
4. Searching for a vertical straight line among tilted lines of angles -80, -60, -40, -20, 20, 40, 60, 80
(Figure 1F, right). Each of the objects was enclosed in a square of size 2.3 x 2.3 dva. The lines were
of length 2 dva and width 0.3 dva. The search image spanned 11.3 x 11.3 dva. Targets and distractors
were randomly placed in a 4 x 4 grid. Inside each of the grid cells, the objects were randomly shifted.
In the heterogeneous cases (Experiment 6), distractors were selected such that the proportions of
individual distractor angles were equal. Four set sizes were used: 1, 4, 8, and 12. There was a total of
120 experiment trials per condition, equally distributed among each of the set sizes.

B Computing key press reaction time from number of fixations

The proposed computational model of visual search predicts a series of fixations. The psychophysics
experiments 1-6 did not measure eye movements and instead report a key press reaction time (RT)
indicating when subjects found the target. To compare the model output to RT, we used data from
a separate experiment that measured both RT and eye movements (Figure S1, Appendix C). We
assume that the key press RT results from a combination of time taken by fixations plus a motor
response time. Therefore to calculate key press reaction times in milliseconds from the number of
fixations we used the linear fit in Equation 1. Where, RT = reaction time in milliseconds, N =
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number of fixations until the target was found, α = duration of a single saccade + fixation = constant,
and β = motor response time = constant.

RT = α �N + β (1)

The value for constants α and β were estimated using the linear least-squares regression method on the
data obtained from the experiment (Figure S1): α = 252.36 milliseconds/fixation and β = 376.27
milliseconds. The correlation coefficient was 0.95 (p < 0.001). Here we assume that both α and β
are independent of the actual experiment and use the same constant values for all the experiments
(see Section 5 in the main text)

C Experiment to convert fixations to key press reaction times

The experiment mentioned in Appendix B is detailed here (Figure S1). In this experiment, subjects
had to find a rotated letter T among rotated Ls. Observer’s key press reaction time and eye fixations
data were recorded by SMI RED250 mobile eye tracker with sample rate 250Hz. Both eyes were
tracked during the experiment. Each of the letters was enclosed in a square of 1 dva x 1 dva. The
width of the individual lines used to make the letter was 0.33 dva. The target and distractors were
randomly rotated between 1◦ to 360◦. Two set sizes were used: 42 and 80. Letters were uniformly
placed in a 6� 7 (42 objects) and 8� 10 (80 objects) grid. The separation between adjacent letters
was 2.5 dva. The search image consisting of the target and distractors was placed on the center of
the screen of size 22.6 dva x 40.2 dva. The search image was centered on the screen. Stimuli were
presented on a 15” HP laptop monitor with a screen resolution of 1920 x 1080 at a viewing distance
of 47 cm. There were 20 practice trials and 100 experimental trials for each of two set sizes. Two
set sizes were intermixed across trials. Observers used a keyboard to respond whether there was or
was not a letter T in the display. The experiments were written in MATLAB 8.3 with Psychtoolbox
version 3.0.12 [4, 11, 13]. Twenty-two observers participated in the experiment. All participants
were recruited from the designated volunteer pool. All had normal or corrected-to-normal vision and
passed the Ishihara color screen test. Participants gave informed consent approved by the IRB and
were paid $11/hour.

D Converting pixels to degrees of visual angle for eccNET

We map the receptive field sizes in units of pixels to units of degrees of visual angle (dva) using 30
pixels/dva. This value indirectly represents the “clarity” of vision for our computational model. Since
we have a stride of 2 pixels at each pooling layer, the mapping parameter η from pixel to dva decreases
over layers, we have η3 = (30/2) pixels/dva, η6 = (30/4) pixels/dva, η10 = (30/8) pixels/dva,
η14 = (30/16) pixels/dva, and η18 = (30/32) pixels/dva. To achieve better downsampling outcomes,
the average-pooling operation also includes the stride [7] defining the movement of downsampling
location. We empirically set a constant stride to be 2 pixels for all eccentricity-dependent pooling
layers.

E Estimation of RF vs Eccentricity plot in Deep-CNN models

We estimated the RF vs Eccentricity plot in Deep-CNN Models through an experimental procedure.
At first, for simplification and faster calculation, we replaced all the convolutional layers of the
architecture with an equivalent max-pooling layer of the same window size. The same window size
ensures that the simplified architecture’s receptive field will be the same as the original one. We then
feed the network with a complete "black" image and then followed by a complete "white" image, and
saves the neuron index, which shows higher activation for the white image compared to the black
one. This gives the indexes of the neurons which show activity for white pixels. After this, we feed
the model with several other images having a black background with a white pixel area. The white
portion of the images was spatially translated from the center of the image towards the periphery. For
each of the neurons which have shown activity for the white image, we check its activity for all of the
translated input images. Based on this activity, we estimate the receptive field size and eccentricity
for the neurons. For an example unit j, if it shows activity for input images having white pixels at 6
dva to 8 dva, we say the RF for the unit j is 2 dva and its eccentricity is 7 dva.

4



F Visualization of acuity of the input image at successive
eccentricity-dependent pooling layers

After applying a convolution operation, the raw features of the input images get transformed to
another feature space. For visualization purpose, we removed all the convolutional layers from
the model and only kept the pooling layers. Therefore, after each pooling operation, we obtain an
image similar to the input image with different acuity depending on the pooling operations. The
corresponding visualization for eccNET is shown inFigure 3A.

Input image size = 1200 px X 1200 px

Layer 3
Distance (px) 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285
Local RF (px) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Layer 6
Distance (px) 30 38 46 54 62 70 78 86 94 102 110 118 126 134 142 150
Local RF (px) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Layer 10
Distance (px) 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
Local RF (px) 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10

Layer 14
Distance (px) 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Local RF (px) 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12

Layer 18
Distance (px) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Window size (px) 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12

Table S1:Variations of local receptive �eld size vs distance from the �xation at each pooling
layer of eccNET.This table shows the variations in local receptive �eld size (r j

l ) with the change in
distance from the �xation (dj

l +1 ) with respect to the output of the pooling layer at layers 3, 6, 10, 14,
and 18 of eccNET. The values are in pixels (px).

G Training details of VGG16 from scratch on rotated ImageNet and MNIST
datasets

G.1 Rotated ImageNet

The training procedure follows the one in the original VGG16 model [15]. The images were
preprocessed according to original VGG16 model, i.e., resized such that all the training images had
a size of 256 by 256 pixels. Then a random crop of 224 x 224 was taken. Then the image was
�ipped horizontally around the vertical axis. After this the image was rotated by 90 degrees in the
anti-clockwise direction. The VGG16 architecture was built using TensorFlow Keras deep learning
library [1], with the same con�guration as the original model. Training was carried out by minimizing
the categorical cross-entropy loss function with the Adam optimiser [9], with initial learning rate
of 1 � 10� 4, step decay of1 � 10� 1 at epoch 20. The training was regularised by weight decay of
1 � 10� 5. The training batch size was 150. The learning rates were estimated using the LR range
�nder technique [16]. The training was done until 24 epochs, which took approximately 1.5 days on
3 NVIDIA GeForce RTX 2080 Ti Rev. A (11GB) GPUs.

G.2 MNIST

The procedure is the same as in the previous section. The training batch size here was 32 and training
was done for 20 epochs.
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H A better quantitative �t to reaction time plots by using bottom-up
saliency and performing parameter �tting

In the main paper, it is important to emphasize that we did not �t any parameter in the model to the
behavioral data in the results shown in the paper. Given the lack of parameter tuning, and the multiple
differences between humans and machines (e.g., how humans are "trained", target-absent trials only
for humans, motor cost for humans, target localization versus detection), one may not expect precise
�tting of reaction times. What we �nd remarkable is that even without such parameter tuning, it is
possible to capture fundamental properties of human behavior. We consider the results to demonstrate
as a proof-of-principle, that neural network models can show the type of asymmetric properties that
are evident for humans without doing any task speci�c training or �tting parameters to capture those
asymmetry.

If we allow ourselves to do parameter �tting to speci�c search asymmetry experiments and also
include a bottom-up saliency model, it is possible to obtain tighter quantitative �ts to the reaction
times as well as capture the asymmetry in case ofExperiment E where the eccNET model initially
failed. We argue that in the case ofExperiment E, it is quite possible that bottom-up saliency is
playing a major role in driving asymmetry in humans which is consistent with the ideas from some
psychophysics studies [14, 6, 8].

Bottom-up saliency model (eccNETbu)

The bottom-up saliency model is based on the information maximization approach (Figure S20).
This method has been previously shown to be effective to �nd salient regions in an image ([5]). The
original implementation used a representation based on independent component analysis. Instead,
here we used the feature maps extracted from the computational model of the visual cortex (eccNET).
At layer l of eccNET, we extracted feature maps of sizeCl � H l � Wl , whereCl is the number of
channels. andH l , Wl denote the height and width, respectively. On thecth channel of the feature
maps, we de�ne the histogram functionFl;c;n (�), which takes the activation valuesyj

l;c;n as inputs
and outputs its corresponding frequency among all individual unitsj at allH l � Wl locations at the
nth �xation. Next, the model calculates the probability distribution for each unitj on thecth feature
map at layerl andnth �xation:

pj
l;c;n =

Fl;c;n (yj
l;c;n )

P
i =0 ;1;:::;W l � H l

Fl;c;n (yi
l;c;n )

(2)

wherepj
l;c;n denotes how prevalent the activation valueyj

l;c;n is over all unitsj on thecth channel
feature map. To capture attention drawn to less frequent visual features on an image, the model
uses the normalized negative log probability to compute a saliency map for each channel and then
averages the saliency maps over all channels and then over all selected layersl = 9 ; 13; 17 to output
the overall saliency mapSn at thenth �xation:

Sn =
X

l =9 ;13;17

C lX

c

� log(pj
l;c;n )

pmax � pmin
(3)

Where:
pmax = max( f� log(pi

l;c;n ) : i = 1 ; 2; :::; H l � Wl g)

pmin = min( f� log(pi
l;c;n ) : i = 1 ; 2; :::; H l � Wl g)

where the normalization of negative log probability is carried out by taking the difference between the
maximum and minimum negative log probability among all the individual unitsi in thecth channel
at layerl . Since not all feature maps at the selected layers are of the same size, we downsampled
individual saliency maps in the lower layersl = 9 ; 13 to be of the same size as those at layerl = 17.

Integration of bottom-up and top-down maps

Given the overall saliency mapSn and the overall top-down activation mapAn at thenth �xation,
we normalize both maps within [0,1] and compute the overall attention mapOn as a weighted linear
combination of both maps.wS;n andwA;n denotes the weights applied on the bottom-up saliency
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mapSn and the top-down modulation mapAn respectively. These coef�cients control the relative
contribution of bottom-up and top-down attention at each �xation. Now, we can simply use some
10-15 examples from each search experiments to �t the parameterwS;n to get a better quantitative �t.
To further eliminate over�tting problem, we clustered these search tasks into three groups and we
proposed three corresponding decision bias schemes for individual group of experiments: scheme
(1) no saliency, scheme (2) equal saliency and top down, scheme (3) strong saliency. These three
schemes effect the decision bias only at the �rst and second �xation(n = 1 ; 2) in each individual
trial. For the subsequent �xations (n > 2), we argued that humans are strongly guided by top-down
modulation effect with minimal bottom-up effect; that iswS;n = 0 andwA;n = 1 for all n > 2
regardless of the nature of visual search experiments. We formulated the computation of overall
attention map as follows:

On = wS;n Sn + wA;n An (4)

where 8
>>>>>>>>><

>>>>>>>>>:

wS;n = 0 ; wA;n = 1 if scheme (1) andn = 1
wS;n = 0 :5; wA;n = 0 :5 if scheme (2) andn = 1
wS;n = 1 ; wA;n = 0 if scheme (3) andn = 1
wS;n = 0 ; wA;n = 1 if scheme (1) andn = 2
wS;n = 0 :37; wA;n = 0 :63 if scheme (2) andn = 2
wS;n = 0 :37; wA;n = 0 :63 if scheme (3) andn = 2
wS;n = 0 ; wA;n = 1 if n > 2

(5)

Search tasks belonging to scheme (1) are Line among Curves (Figure 1A), Curve among Lines
(Figure 1A), Cross among No-Intersections (Figure 1C), and No-Intersection among Crosses
(Figure 1C). Search tasks belonging to scheme (2) are L among Ts (Figure 1D), T among Ls
(Figure 1D), and Orientation Heterogeneous T 20 (Figure 1F). The rest of the task belongs to
scheme (3). The results after introducing these changes are shown inFigure S21

I Integration of attention maps in eccNET

Here we follow the details of calculation of the weight coef�cients to merge the attentional maps
(described in Section 3, below Equation 2 in the main text). The following numbers are taken from
the example illustrated inFigure S22.

W1 =
max(A1)

P i =3
i =1 max(A i )

=
415261

415261 + 164618 + 17118
= 0 :696

W2 =
max(A2)

P i =3
i =1 max(A i )

=
164618

415261 + 164618 + 17118
= 0 :276

W3 =
max(A3)

P i =3
i =1 max(A i )

=
17118

415261 + 164618 + 17118
= 0 :029

(6)

Here is the step-by-step calculation for pointP1:

A1(489; 69) =412454 =) A1;normalized (489; 69) =
A1(489; 69) � min (A1)
max(A1) � min (A1)

=
412454� 255590
415261� 255590

= 0 :982
(7)

A2(489; 69) =143382:031 =) A2;normalized (489; 69) =
A2(489; 69) � min (A2)
max(A2) � min (A2)

=
143382� 57584
164618� 57584

= 0 :802
(8)

7



A3(489; 69) =9491:743 =) A3;normalized (489; 69) =
A3(489; 69) � min (A3)
max(A3) � min (A3)

=
9492� 846
17118� 846

= 0 :531
(9)

Therefore, the value of pointP1 in the overall map (Om ) will be:

Om (489; 69) =
i =3X

i =1

Wi � A i;normalized = 0 :982� 0:696 + 0:802� 0:276 + 0:531� 0:029 = 0:92

(10)

And the value of pointP1 in the overall map without any normalization and scaling (Om;ns ) will be:

Om;ns (489; 69) =
i =3X

i =1

A i = 412454 + 143382 + 9492 = 565328 (11)

We follow a similar procedure for pointP2.

A1(108; 427) = 392635 =) A1;normalized (108; 427) =
392635� 255590
415261� 255590

= 0 :858 (12)

A2(108; 427) =163745 =) A2;normalized (108; 427) =
163745� 57584
164618� 57584

= 0 :992 (13)

A3(108; 427) = 13075 =) A3;normalized (108; 427) =
13075� 846
17118� 846

= 0 :752 (14)

Om (108; 427) = 0:858� 0:696 + 0:992� 0:276 + 0:752� 0:029 = 0:892 (15)

Om;ns (108; 427) = 392635 + 163745 + 13075 = 569455 (16)

J Perfect match of eccentricity-dependent sampling to the macaque data

There is certainly ample room to build better approximations of the receptive �eld sizes to create a
perfect match of eccentricity-dependent sampling to the macaque data. But, it is worth noting that we
are not aiming for a perfect quantitative match with macaque data; but for preserving the trend of
eccentricity versus receptive �eld sizes.

It is worth pointing out that the curves shown for macaques, as reproduced inmain Figure 2B right ,
constitute average measurements. There is considerable variation in the receptive �eld sizes, even at
a �xed eccentricity and �xed visual area. As one example of many, consider the variation in [12].

It is also worth pointing out that there are extensive measurements of receptive �eld sizes of individual
neurons in macaque monkeys (and also cats and rodents), but there is essentially no such measurement
for humans. There exist �eld potential measurements of receptive �elds in humans (e.g. [20] for
early visual areas and [2] for higher visual areas). Thus, even if we strived to make a better �t to the
average macaque data, it is not very clear that this would help us better understand the behavioural
measurements in this study which were conducted in humans.

Furthermore, there are various constraints and computational limits for making a perfect �t:
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1. Images are represented as “quantised pixel units”, i.e., we have limited pixel sizes to use.

2. Scaling the input image size can be done to map some fractional window size of “0.5x0.5”
equivalent to some integral window size of “2x2” or “3x3”. But this comes at the cost of
using a large size of the input image. There's a memory limitation on the GPU front on how
large the images we can use are.

3. In principle, we could use interpolation between the neighbouring pixels while applying the
pooling operation but we have not tried this.

Thus, for current study we did not focused on creating a perfect match which allowed us in making
the design simplistic, with two parameters (slope of eccentricity versus receptive �eld sizes
 , scaling
factor converting degrees of visual angle to pixels� )
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Figure S1:Experiment to model reaction time from number of �xations. A. Example from the
T vs L visual search task used to evaluate the relationship between reaction times and number of
�xations. B. Reaction time grows linearly with the number of �xations. Each gray point represents
a trial. A line was �t to these data:R(ms) = � � n + � . A �t using linear least square regression
gave� = 252:359ms/�xation and� = 376:271ms (r 2 = 0 :90, p < 0:001). This linear �t was
used throughout the manuscript to convert the number of �xations in the model to reaction time in
milliseconds for comparison with human data.
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Figure S2:IVSN - Reaction time as a function of the number of objects in the display for each
of the six experiments for the IVSN model [21]. The �gure follows the format ofFigure 4 in the
main text.
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Figure S3:Chance - Reaction time as a function of the number of objects in the display for
each of the six experiments for the chance model. The �gure follows the format ofFigure 4 in
the main text.
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Figure S4:GBVS - Reaction time as a function of the number of objects in the display for each
of the six experiments for the bottom-up saliency model. The �gure follows the format ofFigure
4 in the main text.
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Figure S5:pixelMatch - Reaction time as a function of the number of objects in the display for
each of the six experiments for the template-matching model. The �gure follows the format of
Figure 4 in the main text.
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Figure S6: eccNETnoecc - Reaction time as a function of the number of objects in the display
for each of the six experiments for the eccNET model without eccentricity-dependent sampling.
The �gure follows the format ofFigure 4 in the main text.
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Figure S7:eccNET18! 17 - Reaction time as a function of the number of objects in the display
for each of the six experiments for the eccNET model using top-down modulation only at the
top layer. The �gure follows the format ofFigure 4 in the main text.

16



Figure S8:eccNETMNIST - Reaction time as a function of the number of objects in the display
for each of the six experiments for eccNET trained with the MNIST dataset. The �gure follows
the format ofFigure 4 in the main text.
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Figure S9:eccNETRot 90 - Reaction time as a function of the number of objects in the display
for each of the six experiments for the eccNET model trained on a 90-degree rotated version
of ImageNet. The �gure follows the format ofFigure 4 in the main text.
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Figure S10:eccNETf isheye - Reaction time as a function of the number of objects in the display
for each of the six experiments for the eccNET model trained on �sheye distorted images of
ImageNet. The �gure follows the format ofFigure 4 in the main text.
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