

Idiosyncratic Search: Biases in the deployment of covert attention

Nathan Trinkl¹, Ava Mitra¹, Jeremy M. Wolfe^{1,2} ¹Brigham and Women's Hospital, ²Harvard Medical School

Background

- Target eccentricity is positively correlated with both reaction time and error rates in visual search (Carrasco, et. al, 1998).
- The probability of making a saccade to a target at any given fixation point is only ~50% (Wu & Wolfe, 2022).
- The Functional Visual Field (FVF) is the area of a scene around fixation that can be processed (Sanders, 1970).

Could processing within the FVF be heterogenous?

Questions and Hypotheses

Is performance

homogeneous or heterogeneous?

Would the heterogeneity go away if the target was uniquely red?

Persistent heterogeneity might indicate a retinal, not attentional cause

If heterogeneous, is performance Idiosyncratic?

Does it matter if the eyes move before each trial?

Maybe there is a saccadic momentum effect

Methods

Task

1) Move eyes to fixation

2) 7 Ls and 1 T flash in ring for 150 msec around fixation (masked)

3) Os make a 4AFC decision about T orientation

Parameters

- 1) 2 different radii (It didn't matter)
- 2) 2 conditions and 2 sessions for each (ABAB/BABA order)
- 3) Fixation point could be stationary or move to a different spot on each trial
- 4) The dependent measure is error rate as a function of radial position of the target

Results

Static with Black T produces idiosyncratic heterogeneity

Moving with Red T produces less heterogeneity

Exp. 2

Exp. 1

N = 20

Each graph is one

observer

(sampled from

larger dataset)

3 colored lines

averaged across

radii within

session (1,2, and

average)

The thin black

lines are avg data

for all Os

N = 20

Pale green pvalue is a chi-sq test against homogeneity

Static with Black T produces idiosyncratic heterogeneity (replication)

Moving with Black T produces similar heterogeneity for each observer

Conclusions

- Our results suggest that processing within the FVF is heterogenous.
- Pop-out search largely abolishes idiosyncratic error patterns, suggesting that heterogenous FVF processing is a result of idiosyncratic biases in covert attention deployment (either in series or in parallel, you choose)
- The saccades between trials do not markedly affect idiosyncratic patterns of errors.
- Could these idiosyncrasies produce errors? Might we have attentional blindspots?

Carrasco, M., McLean, T. L., Katz, S. M., & Frieder, K. S. (1998). Feature asymmetries in visual search: Effects of display duration, target eccentricity, orientation and spatial frequency. Vision Research, 38(3), 347–374. https://doi.org/10.1016/S0042-6989(97)00152-1

References

Wu, C.-C., & Wolfe, J. M. (2022). The Functional Visual Field(s) in simple visual search. Vision Research, 190, 107965. https://doi.org/10.1016/j.visres.2021.107965

Sanders, A. F. (1970). Some Aspects of the Selective Process in the Functional Visual Field. Ergonomics, 13(1), 101–117. https://doi.org/10.1080/00140137008931124

Acknowledgement

NSF 2146617

Contact

Email: jwolfe@bwh.harvard.edu