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Visual search is a common, everyday behavior that re-
quires close cooperation between memory and attention.
Memory is required for any search for a specific target.
Prospective memory tells us what to look for and when.
Target templates held in working memory help direct at-
tention. When a likely target object is attended, its repre-
sentation in short-term visual memory serves as a probe
into long-term memory to retrieve its identity, which must
then be matched against the template in working memory.
Implicit memory for past searches can influence subse-
quent searches (Chun & Jiang, 1998; Hillstrom, 2000;
Maljkovic & Nakayama, 1994, 1996).

Naturally then, memory plays a key role in major theo-
retical approaches to search and attention (e.g., Chun & Pot-
ter, 1995; Duncan & Humphreys, 1989, 1992; W. Schneider
& Shiffrin, 1977). Some researchers have gone so far as
to propose that working memory is attention (W. X.
Schneider, 1995), and there are data to suggest that the con-
tents of working memory help direct attention (Downing,
1999). The connection between visual search and mem-
ory search has been empirically demonstrated by Hill-
strom and Logan (1998), who showed substantial training
transfer between the two tasks.

This paper is concerned with an additional form of
memory, widely held to contribute to the efficiency of
visual search: memory for each deployment of attention
during a search. Accounts of visual search performance

typically assume (implicitly or explicitly) that subjects
search through the items in the display one by one, with-
out retracing their steps,1 or, in terms of probability the-
ory, that visual search proceeds by sampling without re-
placement. In order for this to occur, there has to be some
memory mechanism that keeps track of previously at-
tended locations. This assumption of memory-driven
search is a central tenet of the standard self-terminating
serial processing model (Sternberg, 1969), which has been
assumed in almost all models of visual search perfor-
mance with a serial component for the last 30 years (e.g.,
Grossberg, Mingolla, & Ross, 1994; W. Schneider &
Shiffrin, 1977; Treisman & Gelade, 1980; Treisman &
Sato, 1990; Wolfe, 1994).

The empirical support for memory-driven search is sur-
prisingly thin given its widespread acceptance in models
of search. The leading hypothesis for this form of memory
in search was proposed by Posner and Cohen (1984), who
proposed that inhibition of return (IOR; the tendency not
to return to recently attended locations in orienting ex-
periments) served to prevent attention from being deployed
to rejected distractors. Klein (1988) devised an elegant ex-
periment to test this hypothesis. Subjects were asked to per-
form a visual search task, which could be either highly
efficient (Q among Os) or inefficient (O among Qs). After
25% of trials, subjects were required to make a speeded
detection response to a luminance probe, which could ap-
pear either at a location previously occupied by a distrac-
tor (“on probes”) or at a previously blank location (“off
probes”). Reaction time (RT) was significantly slower for
on probes than for off probes, providing support for the
IOR version of the memory-driven assumption. Though
this finding initially did not replicate (Klein & T. L. Tay-
lor, 1994; T. L. Taylor & Klein, 1998; Wolfe & Pokorny,
1990), recent work suggests that this effect can be observed
providing the search stimuli persist into the probe phase
(Müller & von Mühlenen, 2000; Takeda & Yagi, 2000).
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Models of visual search performance typically assume that search proceeds by sampling without re-
placement. This requires memory for each deployment of attention. We tested this assumption of memory-
driven search using a multiple-target search paradigm. We held total set size constant, varied the num-
ber of targets in the display, and asked subjects to report whether or not there were at least n targets
present, where n was varied by block. This allowed us to measure the time to find each subsequent tar-
get. Memory-driven search predicts that reaction time should be a linear function of n. The alternative
memory-free search hypothesis predicts an accelerating function. The data falsify the memory-driven
hypothesis. They were consistent with the memory-free search hypothesis but would also be consis-
tent with memory for a small number of previously attended locations.
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It is easy to see the advantages for the visual system
in maintaining such a memory. If rejected distractors (or
their locations) are inhibited, the system would avoid po-
tentially costly duplication of effort and could locate and
identify targets more efficiently. However, there may also
be disadvantages to this scheme. In the dynamic natural
world, as opposed to the static milieu of the typical lab-
oratory search experiment, the contents of the scene may
change rapidly or the initial identification of an object
may be faulty. IOR would not be an advantage if a preda-
tor was initially and irrevocably misidentified as a rock.
Furthermore, although subjects in laboratory experiments
may often wish for a memory system that stores every
pixel of every image, every saccade, and every deploy-
ment of attention, the brain tends to discard unimportant
details, retaining only the level of detail that is practical
(given a finite brain) and adaptive (given the structure of
the environment). Memory-driven search should be treated
as an empirical issue, rather than taken as given.

In a recent paper (Horowitz & Wolfe, 1998), we claimed
that visual search is actually “memory-free,” by which
we meant that no record was being kept of the deploy-
ments of attention during a search. Our experiments in-
volved a “dynamic search” condition, in which we dis-
rupted this hypothetical memory for deployments of
attention during a trial by replotting all items at new, ran-
domly chosen locations every 100 msec. If normal search
through static stimuli is memory driven, performance
should have been disrupted on dynamic trials. However,
if search is normally memory free, then the efficiency of
search should have been comparable for static and dy-
namic search. In several experiments, we found that RT
3 set size slopes were equivalent for the two conditions,
contradicting the memory-driven hypothesis (Horowitz
& Wolfe, 1998). In the present paper, we present con-
verging evidence for the memory-free search hypothesis
from a simple variant of a standard, static search paradigm
that does not involve actively disrupting processing.

Mathematically, the difference between memory-driven
search and memory-free search is the difference between
sampling without replacement and sampling with replace-
ment. We can therefore think of visual search in terms of
the classic probability theory problem of pulling colored
balls from an urn (Johnson & Kotz, 1977). Assume that
distractors are red balls and targets are green balls. Sam-
pling without replacement (memory-driven search) means
that the subject pulls balls from the barrel, examines their
color, and tosses them aside. The number of draws, S, from
the barrel before one green ball is pulled out is given by
the negative hypergeometrical distribution (Johnson &
Kotz, 1977). The expected value E(S) of this distribution,
assuming t targets and d distractors, is given by

E (S ) = . (1)

For a memory-free model, search proceeds with re-
placement: The subject pulls a ball from the urn, classifies
it, and then returns it to the urn before drawing the next

ball. In this case, the distribution of finishing times is given
by the negative binomial distribution (Johnson & Kotz,
1977), and the expected value of S is

E (S ) = 1 + . (2)

In the majority of search experiments in the literature,
only one target is present (t = 1). In this case, Equation 1
reduces to E(S ) = (d + 2) /2, which leads to the assump-
tion that only half of the items are sampled on average dur-
ing a serial search. Equation 2 reduces to E(S) = d + 1,
indicating that, on average, as many samples as there are
items (plus one) are needed to find the target during a
memory-free serial search. The predictions of our previ-
ous, dynamic search experiments implicitly assume this
difference in the expected number of samples (Horowitz
& Wolfe, 1998). If we wish to test the memory-free hy-
pothesis with static stimuli, we cannot use simple search
for a single target because we lack firm knowledge of the
attentional dwell time (Moore & Wolfe, in press; Moray,
1969). Thus, using RT data, we cannot determine whether
subjects take X samples at a rate of Y samples/sec or 2X
samples at a rate of 2Y samples/sec. However, Equations 1
and 2 suggest that multiple-target search tasks will be
more informative. Again, let’s assume that distractors are
red balls and targets are green balls. Under the memory-
driven model, sampling occurs without replacement,
which means that the subject pulls balls from the barrel,
examines their color, and tosses them aside. After the
first green ball is found, the subject tosses it aside with
the rest and keeps plucking balls from the barrel. When
the subject goes to search for the second target, however,
there are now fewer balls overall; the effective set size has
decreased. The number of remaining green balls decreases
proportionately, and, thus, the time to find each succes-
sive green ball is a constant.

More precisely, the time to find n by targets sampling
without replacement is given by the general form of Equa-
tion 1, the expected value of the negative hypergeomet-
rical distribution (Johnson & Kotz, 1977), shown in

E(S ) = . (3)

It is clear that if we hold t and d constant and vary n,
the RT will be a linear function of n.

Under the memory-free model, however, the subject
throws each ball back into the barrel after examining it.
Thus, the effective set size remains constant. The domi-
nant factor is now the decreasing number of remaining tar-
gets, and the time to find each successive target now
lengthens. The necessary number of samples is again
given by the negative binomial distribution. We can gen-
eralize Equation 2 by assuming that each search for a tar-
get is an independent search (an instance of Equation 2)
and that each target, once found, becomes a distractor, thus
decreasing the number of targets by one and increasing
the number of distractors by one with each search. We for-
malize this argument in Equation 4:

n(t + d + 1)
} }

t + 1

d
}
t

(t + d + 1)
} }

t + 1
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(4)

Note that this illustrates the limited sense in which we
label search as memory free. In order to propose this test,
we must assume that a subject will be able to remember
that he/she found a target at a specific location even if
he/she forgets the course of the search that led to that tar-
get (a point demonstrated by Gibson, Li, Skow, Brown,
& Cooke, 2000). Without some memory, the subject
would not know whether he/she had found two targets in
a display or the same single target twice. However, what-
ever form this memory takes, it does not guide attention.
That is, a subject may remember seeing a stimulus (even
a stimulus at a particular spatial location), but that need
not prevent him/her from revisiting that location during
the search process.

Figure 1 shows the number of samples predicted by each
model as a function of n, assuming 16 items in the display,
5 of which are targets. Both models show increasing RTs
as a function of n, but the memory-free curve accelerates,
whereas the memory-driven curve is linear, reflecting the
superior efficiency of the memory-driven model in this sit-
uation.

Our experiments were designed to test whether the em-
pirical RT function for such a task would be linear or ac-
celerating. We held total set size constant, varied the
number of targets in the display, and asked subjects to re-
port whether or not there were at least n targets present.
The criterion, n, was varied by block. There have been
many studies on the effect of redundant targets in search
displays (Estes & H. A. Taylor, 1966; Ward & McClel-
land, 1989; Wolford, Wessel, & Estes, 1968), but these
have typically been concerned with the effects of redun-
dancy on RT to the first target. In contrast, we were inter-

ested in measuring RT to each subsequent target, which
this paradigm allowed us to do.

METHOD

Subjects
Ten subjects from our volunteer subject pool served as subjects

in return for compensation of $7/hour. All subjects had normal or
corrected-to-normal visual acuity and passed the Ishihara color
screen. All gave informed consent prior to their participation .

Apparatus and Stimuli
Set size was fixed at 16 items, presented at randomly chosen lo-

cations in a 6 3 6 matrix. Each cell was 1.17º from its neighbor.
Distractors were letters chosen from the set of all letters, except for
I, J, and O, and were presented in 48-point Arial font. In a given dis-
play, each distractor was unique. Two versions of the experiment
were run. In the varied-targets condition, targets were numerals,
chosen randomly (without replacement) on each trial from the set
of nonzero numerals (zero was excluded to avoid confusion with
the letter O). In the identical-targets condition, all targets on a given
trial were identical to each other, again chosen randomly from the
digits 1 through 9.

Procedure
Each session consisted of four blocks of 240 trials. The identical-

targets and varied-targets conditions were run in separate 1-h ses-
sions, with condition order counterbalanced. At the start of each
block, the subject was given the following instructions :

In this block, we want you to tell us whether or not there are n numerals
in the display. There may be anywhere from 1 to 5 numerals present. If
you see at least n numerals, press the “quote” key, but if you only see
n 2 1 or fewer numerals, press the “a” key. Please respond as soon as
you’re sure how many numerals there are in the display, because we are
interested in your reaction time. There will be 30 practice trials and 240
real trials.

The number n was constant over a block but different for each
block, and the order of blocks was randomly selected for each sub-
ject. In each block, half of the trials required a “yes” response, and
half required a “no” response. This meant, for instance, that when
n was 5, half of the trials (120) had 5 targets, whereas there were 30
trials each with 1, 2, 3, and 4 targets. The subjects were asked to re-
spond as quickly and as accurately as possible.

RESULTS

Figure 2 shows correct target-present RTs, averaged
across subjects for the two versions of the experiment.
Error bars are standard errors of the mean. Qualitatively,
the answer is quite clear. The curves appear to be accel-
erating, as predicted by the memory-free hypothesis, and
not linear, as predicted by the memory-driven hypothesis.

Statistical Analysis
To provide a statistical test for this impression, we con-

centrate on the functions for 4 and 5 targets present since
the functions for 2 and 3 targets present lack enough
points to evaluate the linearity of the curve. Our analysis
focused on identifying a significant quadratic trend and
then determining the sign of the quadratic regression co-
eff icient. A positive quadratic regression coeff icient
would indicate a positively accelerated curve. Results of
these analyses are given in Table 1.
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Figure 1. Simulated reaction times (assuming a 50-msec dwell
time) to find a given number of targets, assuming a display con-
sisting of 5 targets and 11 distractors, for memory-driven (Equa-
tion 3; open symbols) and memory-free (Equation 4; filled sym-
bols) models.
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These analyses confirm what is obvious from a glance
at Figure 2: The n 3 RT curves are positively accelerated.
The effect is hard to confirm with only three points on a
curve (the 4-target case) but becomes statistically robust
when there are four points to evaluate (the 5-target case).
This pattern of results makes little sense if one assumes
a memory-driven search mechanism; a search that pro-
ceeded through the display should find each successive
target in the same amount of time. To explain these data
on a memory-driven account, we would have to assume
that the inhibitory memory was reset after each target was
found, which would seem to limit the usefulness of the
proposed mechanism for any but the simplest of search
tasks.

Another striking feature of the data is that the varied-
targets condition produced slower RTs than did the 
identical-targets condition. We confirmed this observation
via a series of separate analyses of variance (ANOVAs)
performed on the data at each level of m, the number of
targets actually present. The main effects2 of varied versus

identical targets are shown in Table 2. Correct “no” RTs
are shown in Figure 3. Unlike the curves for “yes” RTs,
the functions in Figure 3 are linear and flat. According to
the standard self-terminating serial search model, an ex-
haustive search should always be required to determine
that there are fewer than n targets.3 Since total set size
was held constant in this experiment, the “no” trial RT
curves should lie on top of one another. In fact, each ad-
ditional target in the display increased RTs in the varied-
targets condition by around 500 msec. We statistically con-
firmed this observation by submitting the data from each
block of trials (where n is held constant) to a one-way
ANOVA and testing the effect of m. Results are given in
Table 3.

According to the memory-free model, subjects give up
searching and respond “no,” not when they have searched
all the items but when they feel that they have searched
“long enough.” The criterion for what is “long enough”
will vary with many factors (Chun & Wolfe, 1996). We
can speculate as to why subjects are willing to wait longer
when there are more targets in the display, but the critical
point is that subjects are not engaging in exhaustive search
but are adjusting some criterion that varies directly with
the number of targets (Zenger & Fahle, 1997).

Subjects can commit two types of errors in this task:
underestimates (i.e., responding “no” when the correct an-
swer is “yes”; shown in Figure 4) and overestimates (i.e.,
responding “yes” when the correct answer is “no”; shown
in Figure 5). We use the terms underestimates and overes-
timates, rather than the traditional misses and false alarms,
because errors in this task are not directly comparable to
misses and false alarms in standard search tasks. In a stan-
dard present /absent search, a “no” response on a target-
present trial indicates that the target has been missed. How-
ever, if a subject is asked whether or not there are 5 targets
in a 5-target display, and he/she responds “no,” he/she
might have missed 1 target or 2, or 5. Perhaps, the subject
found all 5 and just miscounted. It is simply not possible
to determine the actual number of misses in this task.

Looking at Figures 4 and 5, it would appear that the two
types of errors behave differently, with underestimates co-
varying with correct “yes” RTs and overestimates moving
in the opposite direction. In fact, the error data follow a
fairly simple pattern: The closer the number of targets in
the display (m) is to the number of targets being looked
for (n), the more errors subjects make. This is similar to
the “distance effect” observed for numerical comparisons
in RT (Moyer & Landauer, 1967). The presence of a dis-
tance effect is not surprising in this experiment. When m
is close to n, more distractor items have to be searched.
That is, determining whether there are at least 2 targets
present can be done more quickly when there are actually
5 targets, as opposed to when there are actually 2 targets.
This, in turn, will increase the chance of producing an
error, because each time an item is attended, there is some
probability of it being misidentified. Moreover, when m
is close to n, there is a greater chance of a decision stage

Figure 2. Correct “yes” reaction times. Panel A shows results
from the varied-targets condition; panel B shows data from the
identical-targets condition. Parameters on the curves refer to the
number of targets actually present (m). Error bars indicate the
standard error of the mean. Note the different scales on the two
panels.
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error. That is, it is easier to mistake 5 targets for 4 than it
is to mistake 1 target for 4.

Presumably, the subjects could have improved accu-
racy by paying a cost in slower RTs. How would that have
changed the pattern of results shown in Figure 2? In the
case of underestimate errors, the covariance with RT sug-
gests that reducing errors would have made the acceler-
ation of the functions in Figure 2 more pronounced. The
only significant numbers of overestimation errors occur
in the cases in which the number of targets to look for is
one greater than the number of targets present. If the sub-
jects had been more cautious and more accurate about
these trials, the main effect would have been to increase
RTs for “no” responses in those conditions. It is possible
that some of these errors represent trials in which the sub-
jects guessed quickly before they had enough information
to make a correct response. On such trials, wrong guesses
will show up as errors, but correct (“lucky”) guesses will
reduce the estimate of mean RT on “yes” trials. The “true”
RTs should thus be longer (Eriksen, 1988; Miller & Lopes,
1991). This would, again, increase the acceleration of the
curves in Figure 2. To summarize the point, the subjects
made a substantial number of errors, but the pattern of
errors suggests that we may have merely underestimated
the acceleration of the functions in Figure 2.

Model Fitting
We can do more than simply discriminate between two

hypothetical curve shapes. In a standard search task, we
can fit a linear model to the data and estimate parameters
such as the intercept and the slope, which indexes search
efficiency. Similarly, we can fit simple models to the data
from the n-targets task, on the basis of either memory-
driven or memory-free assumptions. We model RT by
adding two parameters to Equations 3 and 4: an intercept,
b, and a search rate, r. The search rate is equivalent to the
slope of the linear regression on RT 3 set size data. The
memory-driven model becomes

RT = b + , (5)

and the memory-free model becomes

(6)

Using these equations, we can solve for b and r and
determine whether the estimates for r agree with those
derived from other search tasks, as well as quantitatively
compare the goodness of fit of the two models.

In addition to the two “pure” models, we fit two hybrid
models, a mixture model and a limited-capacity memory
model, which will be discussed separately.

The mixture model. The mixture model assumes that
subjects perform memory-guided searches on some trials
and memory-free searches on the remaining trials.4 The
observed distribution of RTs would then be a mixture of
the two pure (memory-driven and memory-free) distri-
butions, usually termed the basis distributions. Unfortu-
nately, tests for the presence of mixture distributions typ-
ically require a priori knowledge of the basis distributions
(Yantis, Meyer, & Smith, 1991), which we do not have.
Instead, we estimated how well a simple hypothetical mix-
ture distribution could account for the mean RT data. The
mixture model was implemented by assuming that each
data point consisted of some proportion (w) of memory-
driven searches and some proportion (1 2 w) of memory-
free searches. If the output of the memory-driven model
in Equation 5 is set to D and the output of the memory-
free model in Equation 6 is set to F, then the mixture model
is given in Equation 7. The two component equations were
constrained to use the same search rate and intercept pa-
rameters during model fitting.

RT = wD + (1 2 w)F. (7)

Each model was fit separately for each subject, using
a least mean squared error criterion. All 10 hit data points
from each subject were used to fit the models. The mean
parameter estimates for the two models are compared in
Table 4, along with the corresponding root mean square
(RMS) errors.

RT = + + - +
+ -
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Table 1
Statistical Analyses of the Effect of n on “Yes”

Trial Reaction Times for the m = 4 and m = 5 Curves

Main Effect Quadratic Trend Quadratic Regression

n F df p F df p Mean Coefficient t df p

Varied Targets
4 29.42 (2,18) , .0001 2.357 (1,9) . .1 91.63 2.821 (9) , .05
5 61.39 (3,27) , .0001 16.72 (1,9) , .0005 261.67 7.11 (9) , .0001

Identical Targets
4 13.60 (2,18) , .0005 , 1 (1,9) . .1 32.42 1.64 (9) . .1
5 28.25 (3,27) , .0001 11.49 (1,9) , .005 131.44 4.68 (9) , .005

Table 2
Main Effect of Identical Versus Varied Targets

on Correct “Yes” Reaction Times for Each Value
of m, the Number of Targets Actually Present

m F(1,9) p

2 21.03 , .005
3 10.77 , .005
4 23.04 , .005
5 27.06 , .001



SEARCH FOR MULTIPLE TARGETS 277

The quantitative advantage of the memory-free model
over the memory-driven model was not dramatic, but it
was consistent. For the varied-targets case, the advantage
of the memory-free model was significant [t (9) = 6.11,
p , .0005], whereas, for the identical-targets data, the
difference did not reach significance [t (9) = 1.71, p = .12].
Although the mixed model improved the fit to the data
when compared with the pure amnesic model, this im-
provement was not significant for either the varied-targets
data [t (9) = 1.12, p = .29] or the identical-targets data
[t (9) = 1.78, p = .10]. Since this negligible improvement
in the fit comes at the expense of an extra parameter (w),
the pure memory-free model remains a better description
of the data.

The value of w indicates that the subjects, on average,
behaved as if they could use a memory-driven strategy
on 11% of trials. In fact, for most subjects (7 of 10 in the
varied-targets condition and 5 of 10 in the identical-targets
condition), the best-fitting value for w was 0, indicating
that the pure amnesic model fit better than any mixture.
The highest observed weight in the varied-targets condi-

tion was .66 (note that for this subject, the best-fitting
intercept was an impossible 0 msec; the weight drops to
.47 as the intercept is forced above 150 msec). For the
identical-targets data, 1 subject had a weight of 1.0, in-
dicating that the pure memory model fit better than any
mixture.

The limited-capacity memory model. The pure
memory-free model assumes no memory for prior atten-
tional deployments whatsoever, whereas the memory-
driven model assumes a perfect memory for rejected dis-
tractor locations without any capacity limits (or at least
with a capacity of 16). The limited-capacity memory
model, however, allows capacity to vary between 0 and in-
finity. A model with a limited capacity proposes that we
can avoid retracing the last C steps, where C is a measure
of the capacity. Such a memory might resolve some prob-
lems that a pure memory-free account creates. For in-
stance, it is hard to imagine how to search with a memory-
free system without perseverating on the most salient
item in the display, even if it were a distractor (Barbur,
Forsyth, & Wooding, 1993). With some memory for the
most recently visited items, this problem is ameliorated. In
order to produce the accelerating curves we see in this ex-
periment, as well as to account for the apparently memory-
free behavior of subjects in our previous experiments, the
memory capacity would have to be quite low. However,
it need not be zero.

According to the memory-driven model, the next item to
be examined is sampled from only all those items that have
not been previously inspected. In the memory-free model,
the next item is sampled from the full set of items, regard-
less of whether or not they have been previously examined.
The limited-capacity memory model proposes that the next
item is sampled from all items, except for the C most re-
cently examined items. When a new item is examined, it
(or its location) is somehow marked. However, since there
are only a limited number of markers, this means that a
marker has to be removed from some other item, presum-
ably the item that has been marked the longest. To borrow
an analogy from Pylyshyn (1989), the guidance system has
C “fingers.” It can put a finger on each item after it has
been examined, to prevent it from being resampled. How-
ever, once the C + 1th item is selected, finger 1 must be re-
moved from item 1 and placed on item C + 1; at this point,
item 1 may again be sampled by the system, assuming that
the target has not yet been found.

If all distractors are treated identically (and identified
targets treated as distractors), this is mathematically iden-
tical to a model in which, once the fingers are down, they
do not move; this version is more mathematically tractable.

Figure 3. Correct reaction times from “no” response trials.
Panel A shows results from the varied-targets condition; Panel B
shows data from the identical-targets condition. The parameters
indicate the number of targets actually present (m). Note that the
m = 1 curve exists only for “no” trials, whereas the m = 5 curve
exists only for “yes” trials. Error bars indicate the standard error
of the mean. Here, the two panels are plotted on the same scale.

Table 3
Statistical Analysis of the Effect

of m on “No” Trial Reaction Times

Varied Targets Identical Targets

n df F p F p

3 (1,9) 40.68 , .001 76.27 , .001
4 (2,18) 52.66 , .001 63.32 , .001
5 (3,27) 62.47 , .001 66.59 , .001
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If we label the capacity (“fingers,” or the number of
previous deployments that are remembered) as C, then
the limited-capacity memory model assumes that each
search consists of two phases: a memory-driven search
through C items, followed by a memory-free search
through set size 2 C items. Given m, the number of tar-
gets in the array, there will be m¢ targets in the initial set
of C items, and m 2 m¢ targets among the remaining
items. The m¢ can take on values from 0 to m, or from 0
to C if C , m. We calculated the probability of each pos-
sible outcome (i.e., m¢ = 1, and m 2 m¢ = 4). Next, for
each outcome, we determined the time required to search
through the initial C items in memory-driven fashion and
added it to the time needed to search through the re-
maining items in memory-free fashion (if m¢ $ n, the
memory-free search was skipped; if m¢ , n, search
through the initial C items was exhaustive), and we mul-
tiplied this time by the probability of that particular out-
come. The weighted RTs were then summed to deter-
mine the predicted RT for each target-present data point
in our experiment . As in the other models, these numbers
were multiplied by a search rate, r, and added to an inter-

cept, b. Then r was constrained to be positive, b was con-
strained to be . 150 msec, and C was allowed to vary be-
tween 0 and 10.5 Results are shown in Table 5.

The first and most important point to note is that, as with
the mixture model, the limited-capacity model does not
provide a significant improvement over the pure memory-
free model, despite the luxury of an added parameter, C.

That said, it is possible to derive the memory capacity,
C, that provides the best fit of each subject. The mean
fitted value of the capacity of the memory estimate was
3 items. However, there is substantial variability in the
estimates for different subjects. For 4 of 10 subjects, the
best-fitting capacity was 0, indicating a pure memory-
free model. For the remaining subjects, however, C ranged
as high as 9 items, which is fairly large. The best fit in
the average data is for C = 0; however, as C goes from 0
to 10, the RMS error increases by only 2.78 msec. So, al-
though the pure memory-free model provides the most
economical fit to the data, the predictions of this model
(in this context) differ very little from the predictions of
models that assume a limited memory for prior deploy-
ments of attention.

Figure 5. Proportion of overestimates (incorrectly responding
“yes”). Panel A shows results from the varied-targets condition;
Panel B shows data from the identical-targets condition. Param-
eters on the curves refer to the number of targets actually present
(m). Error bars indicate the standard error of the mean.

Figure 4. Proportion of underestimates (incorrectly respond-
ing “no”). Panel A shows results from the varied-targets condi-
tion; Panel B shows data from the identical-targets condition. Pa-
rameters on the curves refer to the number of targets actually
present (m). Error bars indicate the standard error of the mean.
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DISCUSSION

The requirements of this search task illustrate the in-
teractions of attention and memory in visual search. Sub-
jects must keep the task instructions and the current num-
ber of targets (n) to find in working memory, retrieve
visual descriptions of the nine digits from long-term
memory, and use these descriptions to form target tem-
plates (Duncan & Humphreys, 1992), which in turn must
be held in working memory during each search trial.
After finding each target, subjects must remember how
many targets have already been found. Critically, how-
ever, subjects apparently do not remember which dis-
tractors they have rejected. The memory-free model fits
the data better, both qualitatively and quantitatively. For the
varied-targets condition, for all 10 subjects, the memory-
free model was a better fit than the memory-driven model.
The parameters derived from the model fits are interest-
ing (see Table 4). The memory-driven model yields a
search rate of 93 msec/item. This is much slower than pre-
vious data on search for numerals in letters (Hock, Rosen-
thal, & Stenquist, 1985; Krueger, 1984) would suggest.
The memory-free model, on the other hand, gives an es-
timate of 31 msec/item, which is within the usual range
for this type of search. Of course, although subjects may
not keep track of identified distractors, they must keep
track of identified targets in order to be able to do the task
at all (Gibson et al., 2000). If attention is sampling the
display with replacement, then it is possible to come
upon the same target more than once during the course
of the search. In order to perform with any reasonable
level of accuracy, subjects must be able to remember
whether or not they have already encountered a particular
digit. What kind of memory subserves this function? In
the varied-targets condition, the subjects could have main-
tained a verbal list of digits in working memory or a set
of target locations in spatial memory. However, the re-
sults of the identical-targets condition indicate that it is
possible to perform the task well without recourse to ver-
bal memory, which would have been useless in this con-
dition.6 The subjects in this condition must have been
using some spatial memory to record where targets had
been located. This representation clearly cannot be used
to direct the deployment of attention, or else the subjects
would surely have used it to remember distractor loca-
tions, and we would have observed linear functions.

The quadratic trend was less evident in the identical-
targets version, and the contrast between models corre-
spondingly weaker, though still in favor of the memory-
free model, which produces better fits for 7 of the 10
subjects. This probably results from different search tem-
plates. In the varied-targets version of the experiment,
since the targets are not known in advance, decisions
cannot be made on the physical features of the stimuli,
and all characters must be processed to the level of iden-
tity. In the identical-targets version, once the first digit is
found, the subject knows the identity of the remaining
targets and can adjust his/her search template accordingly.
Depending on your preferred search model, this could
result in suppression of features shared by letters and other
digits, lowered decision thresholds, decreased target–
nontarget similarity, and so on. Models aside, search be-
comes easier once you know that the targets are all “3”s,
for example. This would explain the substantially faster
responses we see in the identical-targets condition (Fig-
ure 2B). This identical-target benefit would tend to make
search for each successive target more efficient. This
would counter the increasing inefficiency of memory-free
search, leading to the weaker advantage for the memory-
free model for this condition. Despite these likely effects,
the memory-free model still provides a better character-
ization of the data in the identical-targets condition than
does the memory-driven model.

Inhibition of Return
The idea that IOR functions as an inhibitory tagging

system can be traced to Posner and Cohen (1984), who
suggested that the function of IOR is to bias the organism
toward novelty. IOR is typically observed in orienting ex-
periments (Posner, 1980), in which subjects are asked to
make a speeded response to the appearance of a target that
appears in one of a limited number of locations. A cue
(such as a luminance transient at the location) is used to

Table 5
Limited-Capacity Model Fitting Results

Condition

Parameter Varied Targets Identical Targets

Search rate (r) (msec/item) 41.98 22.53
Intercept (b) (msec) 372.17 480.72
Capacity (C) (items) 3.00 5.00
RMS error 159.38 76.49

Table 4
Model Fitting Results

Varied-Targets Condition Identical-Targets Condition

Memory-Free Mixture Memory-Driven Memory-Free Mixture Memory-Driven
Parameter Model Model Model Model Model Model

Search rate (r) (msec/item) 30.69 36.83 92.54 13.70 21.11 43.76
Intercept (b) (msec) 417.64 378.00 103.32 526.09 477.94 342.92
Weight (w) 0.11 0.31
RMS error (msec) 159.50 159.15 177.36 76.55 75.87 94.24
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direct attention to one of the possible locations, resulting
in improved target detection at the attended locus relative
to unattended loci, at least when the time between the onset
of the cue and the onset of the target (stimulus onset asyn-
chrony, or SOA) was brief. What Posner and Cohen ob-
served, and other researchers have repeatedly confirmed
(Maylor, 1985; Mondor, Breau, & Milliken, 1998; Pratt,
Kingstone, & Khoe, 1997; Rafal, Calabresi, Brennan, &
Sciolto, 1989), was that this initial facilitation was re-
placed at longer SOAs by a long-lasting inhibitory ef-
fect: Targets are actually more difficult to detect at re-
cently attended locations. The phrase inhibition of return
reflects the theoretical assumption that this inhibitory ef-
fect is a result of the difficulty of redeploying attention to
such locations. Posner and Cohen proposed that this ten-
dency, while yielding less than ideal performance for
laboratory subjects, had an adaptive value for an organ-
ism in the real world: IOR would prevent the organism
from perseverating on one location or object in the visual
field, thus encouraging exploration of the environment.

The explicit link between IOR and visual search was
made by Klein (1988), building on earlier work by Briand
and Klein (1987), Prinzmetal, Presti, and Posner (1986),
and Treisman (1985). As described in the introduction,
Klein found that, in conjunction search tasks (which
should require attentional search; Treisman & Gelade,
1980), luminance probes were harder to detect at distrac-
tor locations than at blank locations, whereas there was
no effect for feature searches (which presumably do not
require attentive search). As Klein and T. L. Taylor (1994)
reported, the difference between the two search tasks in
Klein (1988) appears to have been a statistical fluke. A
number of replication attempts have shown slowed RTs
to on probes relative to off probes in following either type
of search task, and this slowing is attributed to forward
masking (Klein, unpublished data described in Klein &
T. L. Taylor, 1994; Wolfe & Pokorny, 1990). However, re-
cent studies (Müller & von Mühlenen, 2000; Takeda &
Yagi, 2000) have shown that the pattern of results initially
reported by Klein can be observed if the search items re-
main visible during the probe stage, rather than being ex-
tinguished, as in the original experiments (and repli-
cations). This suggests an inhibition that is attached to
object representations, rather than to spatial locations
(Abrams & Dobkin, 1994; Tipper, Driver, & Weaver, 1991;
Tipper, Weaver, Jerreat, & Burak, 1994). It is not clear
whether this phenomenon is more closely related to IOR
or to visual marking (see below).

In the past decade, the boundary conditions for IOR
have been explored and debated at length (Abrams &
Dobkin, 1994; Klein & MacInnes, 1999; Klein & T. L.
Taylor, 1994; Reuter-Lorenz, Jha, & Rosenquist, 1996;
Snyder & Kingstone, 2000; Tipper et al., 1991). The de-
scription of IOR that is emerging suggests that it might
not be well suited to serving as an inhibitory tagging sys-
tem for visual search, at least not at the level of modulat-
ing the rapid deployment of attention.

First, there are the well-known temporal dynamics of
IOR. IOR takes 300 msec to overcome the initial facili-
tation at an attended location (Posner & Cohen, 1984). If
attention is redeployed to a new stimulus every 25, 50, or
even 100 msec, then IOR will not have time to influence
the selection of the next item, though it could play a role
in deployments of the eyes or of attention in long searches
with large set sizes.

Second, there is widespread debate about whether IOR
occurs during discrimination tasks, as opposed to simple
detection tasks. Pontrefact and Klein (reported in Klein
& T. L. Taylor, 1994) and Terry, Valdes, and Neill (1994),
among others, found no IOR in tasks in which subjects
had to discriminate between targets, rather than simply
making a speeded detection response, whereas Pratt and
his colleagues (Pratt, 1995; Pratt & Abrams, 1999; Pratt
et al., 1997) have reported IOR in such tasks (see also
Cheal, Chastain, & Lyon, 1998; Oonk & Abrams, 1998).
If IOR is restricted to detection tasks, then we certainly
should not expect a search task (which requires succes-
sive discriminations) to elicit IOR. Meanwhile, Lupiáñez
(Lupiáñez, Milán, Tornay, Madrid, & Tudela, 1997;
Lupiáñez & Milliken, 1999) has argued that the discrep-
ancies between studies that find IOR for discrimination
tasks and those that do not arise out of the different time
courses of IOR following detection and discrimination.
In Lupiáñez et al.’s experiments, IOR was first observed
for detection tasks at a 400-msec SOA, but discrimina-
tion tasks did not show IOR until the 700-msec SOA.
This brings us back to the time course issue: Such a
mechanism is clearly not compatible with an attentional
dwell time on the order of 50 msec and thus cannot play
much of a role in FIT-style theories of search. It is consis-
tent with the 300- to 500-msec dwell time estimate given
by attentional blink experiments (Chun & Potter, 1995;
Duncan, Ward, & Shapiro, 1994). Such results support a
limited-capacity parallel explanation for the processing
of search displays, and such theories generally do not re-
quire an inhibitory tagging mechanism.

Finally, there may be a limit on the number of locations
that can be concurrently inhibited. The vast majority of
IOR experiments have been carried out with a limited
number of potential locations and usually no more than
one cued location. The few studies on multiple locations
are equivocal. Pratt (1995) concluded that only the im-
mediately prior attended location remains inhibited (see
also Abrams, Oonk, & Pratt, 1998). Two studies (Dan-
ziger, Kingstone, & Snyder, 1998; Tipper, Weaver, &
Watson, 1996) claim to have shown IOR to three succes-
sively cued locations, and Wright (1994; Wright & Rich-
ard, 1996) has demonstrated that IOR can be observed at
up to four locations simultaneously. These results are con-
sistent with the notion that IOR can “mark off ” exam-
ined locations during a serial search procedure. However,
Snyder and Kingstone’s (2000) data suggest that five or
six locations may be the limit, which would reduce the
utility of IOR in searching large displays. Although these
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f indings suggest that IOR cannot provide the infinite
memory required by standard theories, inhibitory tagging
of a small number of locations is not incompatible with
our data.

None of this is to say that Posner and Cohen’s (1984)
suggestion is necessarily wrong. A substantial literature
exists linking IOR to the oculomotor system (Abrams &
Dobkin, 1994; Kingstone & Pratt, 1999; Rafal et al.,
1989; Sapir, Soroker, Berger, & Henik, 1999), suggest-
ing that IOR may be a consequence of generating an ocu-
lomotor program to saccade to a location, rather than a
consequence of attending to a location. On this view, the
apparent connection between IOR and covert attention
derives from the close coupling of attention and eye move-
ments; although attention can be directed independently
of fixation (Posner, 1980), it may be that we cannot make
a saccade to a location without first attending to it (Rafal
et al., 1989). The time course of IOR is much more com-
patible with the saccadic system than with a rapid covert
attention system. It may be that we can retain the hypoth-
esis that IOR serves to bias the organism toward novelty,
as long as we recognize that only eye movements, and
not hypothetical shifts of covert attention, are affected. A
few studies have examined this question, and the evidence
is so far mixed. Largely ignored in the mainstream cog-
nitive literature on visual search have been several stud-
ies in the human factors literature that have looked at the
question of whether searches that require saccades are
“systematic” (memory driven) or “random” (memory
free). A number of studies concluded in favor of a ran-
dom model of search (Bloomfield, 1972; Chan & Court-
ney, 1998; Engel, 1977). Arani, Karwan, and Drury (1984)
proposed a model of search in which the amount of mem-
ory was an explicit parameter. Memory for prior fixations
was assumed to degrade as a power function, governed
by two free parameters: f, the (constant) probability of
recalling an item on the ith fixation, and q, the probabil-
ity of encoding the item in the first place. The probability
of recalling on the ith fixation the fact that the area was
previously fixated on the kth fixation is then given by

Pi ,k = qf i 2 k. (8)

If either of the two parameters is set to 0, the model
becomes memory free. If they are both 1, then the model
exhibits perfect memory-driven behavior. Arani et al.
(1984) suggested that such a mixed model more accu-
rately reflects actual search behavior, and they proposed
that q and f can be measured directly in eye-movement
studies. However, they did not present any data. Similarly,
Courtney and Guan (1996) proposed through simula-
tions that a hybrid model may better characterize search
behavior.

In a recent study, Klein and MacInnes (1999) moni-
tored eye movements while subjects searched a complex
display (taken from the popular “Where’s Waldo” books)
and found that saccade paths were biased away from a
previously f ixated locus. Furthermore, probes (black
disks) placed at previously fixated locations were more

difficult to refixate than were probes at new locations.
These results held true only when the search display was
maintained throughout probe acquisition, in agreement
with the findings of Takeda and Yagi (2000) and Müller
and von Mühlenen (2000). Klein and MacInnes used
these data to argue that IOR functions as a “foraging fa-
cilitator” for the oculomotor system, making the system
more likely to fixate new objects than old objects. If this
is true, then the virtues of the oculomotor system may
compensate for the deficits of the covert attention system.
If attention is biased toward the current fixation locus
(Carrasco, Evert, Chang, & Katz, 1995; Carrasco &
Frieder, 1997; Wolfe, O’Neill, & Bennett, 1998), then
moving the eyes every 250–300 msec would serve to pre-
vent attention from resampling the same objects too often.
Of course, Klein and MacInnes were able to examine in-
hibition only at the first and second most recent fixation
loci (“one-back” and “two-back”), so we do not know what
the capacity of the putative oculomotor inhibitory tagging
system might be. Their data are clearly compatible with
the mixed models proposed by Arani et al. (1984) and
Courtney and Guan (1996), as well as our limited-capacity
model.

Visual Marking
Watson and Humphreys (Olivers, Watson, & Hum-

phreys, 1999; Watson & Humphreys, 1997, 1998, 2000)
reported a phenomenon they refer to as visual marking.
The basic paradigm is as follows: In the “gap” condition,
half of the search display is presented at some SOA (typ-
ically 1,000 msec) before the second half. The target is
in the second half of the display. In the control condition,
all the items are presented simultaneously. Search slopes
in the gap condition were half that of the control condi-
tion, leading Watson and Humphreys (1997) to conclude
that the first half of the display was “marked” as old, so
that subjects did not have to search those items when the
remainder of the display was presented. These results have
been convincingly replicated and extended by Theeuwes,
Kramer, and Atchley (1998). At first glance, this would
seem to be evidence for a memory process active in aid-
ing search. A serial search system could use such a mech-
anism to inhibit a group of previously examined objects.

The data presented here argue that neither visual mark-
ing nor any other process is operating to keep track of at-
tended locations during search. As with IOR, we have to
ask what visual marking is doing. First, the properties of
visual marking suggest that it is not suited for inhibitory
tagging in search: Visual marking is capacity demanding
(diminished in the presence of a concurrent task) and re-
quires at least 400 msec of exposure to the “old” objects
(Watson & Humphreys, 1997). As with IOR, this time
scale would make visual marking a useful inhibitory tag-
ging mechanism only for an attentional processor with a
dwell time of 300–500 msec, inconsistent with the dwell
time estimates from even our memory-driven models,
and near the upper limit of dwell time estimates (Duncan
et al., 1994); such dwell times are consistent only with a
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parallel system processing many items at once, in which
case there would presumably be no need for an inhibitory
tagging system. Second, visual marking has not been
shown to be contingent on attending to an object, but rather
applies to all those objects whose status is “old.” When
subjects are first asked to search the old items before the
new items are presented, visual marking is not observed
(Olivers & Humphreys, 1999).

Serial Versus Parallel Architectures
So far, our arguments have been couched in terms of

serial processing architectures. However, our findings
constrain parallel architectures as well. Consider the 
unlimited-capacity parallel diffusion model (Ratcliff, Van
Zandt, & McKoon, 1999). Applied to search (Ward &
McClelland, 1989), this takes the form of an array of de-
tectors at each location in the field. In the simplest case,
there is one detector at each locus for the target stimulus
and one for the distractor stimulus. These detectors grad-
ually accumulate evidence for their specific stimulus at
that location. When activation of a target detector exceeds
the target threshold, the subject sees a target. When the
distractor detector exceeds the distractor threshold, the
subject sees a distractor. In an n-target search, subjects
would wait for n detectors to exceed the “target” threshold
before making a “yes” response, and subjects would make
a “no” response when all detectors had reached one thresh-
old or the other without enough targets being declared. In
such a model, the shape of the critical m = 5 curve would
depend on the distribution of finishing times for the tar-
get detectors. If the distribution is normal, for instance,
then the diffusion model would make the same (linear)
prediction as the memory-driven serial model.

The results of the present experiment constrain the
space of search models, both parallel and serial, rather
than favoring one general class of architecture over an-
other. However, there is another sense in which these data
are relevant to the perennial task of discriminating be-
tween parallel and serial theories of attention and vision
(Townsend, 1990). Quantitative comparisons between ex-
plicit parallel and serial models have been proliferating
during the past decade (e.g., Eckstein, 1998; Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Palmer, 1995). Such
efforts generally use a standard, memory-driven, serial
self-terminating search as the representative of the serial
side of the debate. It may be worth revisiting this issue
with a memory-free (or limited-memory) serial model pit-
ted against a parallel model.

Adaptive Amnesia?
Given that search would be unquestionably more effi-

cient if it were memory driven, why has the visual sys-
tem developed in this seemingly maladaptive way? One
answer may be that what we see as failures of memory
are in fact side effects of adaptive features of the system
(Schacter, 1999). While in the laboratory we may prize
perfect recall, the more traces stored in memory, the
more difficult it becomes to retrieve a given memory, so
the system must be designed to strengthen important

memories and weaken unimportant ones (Anderson &
Schooler, 1991). Similarly, although laboratory-based
search paradigms may favor memory-driven search, a vi-
sual system that invested resources in keeping track of its
history may find it difficult to respond to a dynamic en-
vironment in which objects (such as predators or prey)
were deliberately camouflaged. A memory-free search
pattern might also be useful for an organism equipped
with an imperfect perceptual system. Object identification
can fail at many stages, from the encoding of basic fea-
tures through to retrieval from long-term storage, so it is
likely that many objects will be misclassified. An archi-
tecture that discouraged revisiting items might leave the
organism vulnerable to early mistakes.

Vision, Attention, and Memory
In any case, the visual system appears to perform ad-

equately without relying on a rich memory representa-
tion. The attentional system acts like a “cognitive miser”
(S. E. Taylor, 1981), preferring rapid adequate perfor-
mance to slow, accurate performance. This is consistent
with an emerging body of evidence concerning the tran-
sient nature of visual representations. Recent research
suggests that, instead of building up a rich, detailed visual
representation, the visual system quickly and efficiently
constructs a brief sketch of the visual world, which is dis-
carded in the next instant (Irwin, Brown, & Sun, 1988;
Irwin, Zacks, & Brown, 1990; Levin, Momen, Drivdahl,
& Simons, 2000; Levin & Simons, 1997; O’Regan, Ren-
sink, & Clark, 1999; Rayner & Pollatsek, 1992; Rensink,
2000; Rensink, O’Regan, & Clark, 1997, 2000; Simons &
Levin, 1998). If vision in general consists of a series of
ephemeral and sparse descriptions of the world, then it
becomes less surprising that visual search is not accom-
plished by building up a representation of the attended
areas of the scene. A visual system that uses the world as
its memory (O’Regan, 1992) would allow the world itself
(mediated, perhaps, by a salience map; Koch & Ullman,
1985) to direct attention, rather than maintaining a map of
inhibited locations.

The rationale behind this experiment was that search
for multiple, consecutive targets in the same array would
give us a better picture of the dynamics of search than a
single-target search would. If a memory for the history of
attentional deployments existed, subjects should be able
to use it to their advantage. Since the data indicate no sav-
ings from one target to the next, we conclude that the vi-
sual system does not rely on inhibitory tagging to guide
attention during search. This conclusion agrees with our
previous experiments (Horowitz & Wolfe, 1998), as well
as with the emerging view of “just in time vision.” While
memory is certainly crucial to perform various compo-
nents of this search task, it is not employed to improve at-
tentional “foraging.”
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NOTES

1. At this point, we are discussing only serial models of attention and
search. However, the competing class of parallel models is built on the
same assumption. We explore this issue in more depth in the General
Discussion.

2. For m . 2, the main effect of n was always significant, and the n
3 m interaction was significant for m . 3 ( p = .09 for m = 2). However,
we believe that these effects are better understood in the context of our
analysis of trend, rather than in the traditional ANOVA.

3. This is an oversimplification. Subjects can get away with less than
exhaustive searches when n and m are far apart (see the section on er-
rors). The overall point still holds, however.

4. We are grateful to Art Kramer for this suggestion.
5. Inconveniently, the method for computing the probability of find-

ing exactly m¢ targets in a sample of C items is valid only for C , (set
size 2 m) (see Johnson & Kotz, 1977, p. 80).

6. Adding this search through memory procedure to the memory-free
model will substantially improve the fit to the data. However, since we
were primarily interested in comparisons with the memory-driven
model (which needs no such component), we thought it would be unfair
to add an extra parameter to the memory-free model.
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revision accepted for publication May 22, 2000.)
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