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Visual searches, great and small, are a continuous part of our lives. As this is being written, I
have just searched for Gate 22B at the Denver Airport. I then proceeded to search for an
electrical outlet, my power cord, the correct port on the laptop, the link to the internet, and
so on. These searches are drawn from the subset of total searches for which I have
introspective awareness and some memory. We engage in search because there is too much
visual information to fully process. Even if the sign for Gate B22 is in my visual field, I still
need to use attentional mechanisms to select that object from the welter of other stimuli on
Concourse B because attention is required to read that sign (Rayner, 1983). Without
worrying, for the present, about who this “I” is that is using attention, it makes some sense
to imagine that I was asking my search engine to conduct these specific searches. Even if I
am not engaged in what seems like deliberate search, covert attention is selecting one object
after another or maybe a few objects at a time, much as the eyes are fixating on one thing
after another. The deployments of attention may be based on the bottom-up, stimulus driven
salience of the stimulus (Einhauser, Spain, & Perona, 2008; Foulsham & Underwood, 2008;
Koch & Ullman, 1985; Masciocchi, Mihalas, Parkhurst, & Niebur, 2009) (Is that a bottom-
up, attention-grabbing bird flying around in Concourse B? Yes, it is!). Alternatively,
attention might be guided by top-down task demands (Jan Theeuwes, 2010), even if those
top-down demands do not usually seem to rise to conscious awareness. Consider the
searches that could be involved in avoiding obstacles as you navigate down the concourse
(Hamid, Stankiewicz, & Hayhoe, 2010; Jovancevic-Misic & Hayhoe, 2009). The obstacles
to be avoided might not be the most salient items but you manage to direct attention to them
without introspective awareness of that search.

A vast set of research topics are present in this evocation of a trip down the airport
concourse. Do we attend to objects or locations (Goldsmith, 1998; Logan, 1996; Roelfsema,
Lammer, & Spekreijse, 1998; Yeari & Goldsmith, 2010)? What are the features that
contribute to bottom-up salience (Jeremy M Wolfe & Horowitz, 2004)? Do those features
really “capture” attention (Jan Theeuwes, 1995); Bacon & Egeth, 1994)? Do new objects
capture attention? (Yantis & Jonides, 1996; Franconeri, Hollingworth, & Simons, 2005)?
How is top-down control of selection organized (JM Wolfe, Horowitz, Kenner, Hyle, &
Vasan, 2004); Hamker, 2006; Jan Theeuwes, 2010)? How do scene semantics guide the
deployment of attention (Henderson & Ferreira, 2004; (Torralba, Oliva, Castelhano, &
Henderson, 2006) (M. L. H. Vo & Henderson, 2009)? How is this implemented in the brain
(Reynolds & Chelazzi, 2004; Buschman & Miller, 2009)? We could continue to list topics.
For a daunting catalog from a computational viewpoint, see Tsotsos (Tsotsos, 2011). Each
of these topics has generated a substantial research literature. In this chapter, however, we
will focus on a different aspect of search that gets somewhat less attention. What happens
when the search is unsuccessful? When is it time to abandon a search without having found
a target? A moment’s introspection reveals that, like successful searches, these abandoned
searches occur all the time. Is there anyone I know in this airport waiting area? I can search
for some period of time but, at some point, I need to give up and move on to the next task.
How is that accomplished? If you find the target, there is an obvious signal that you are
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done. What is the signal that allows you to quit if no target is found? This problem of search
termination is central to a variety of socially critical search tasks. Indeed, the airport is home
to one of the signature examples of the search termination problem. Passing through
security, your carry-on luggage is x-rayed and examined in a visual search for ‘threats’ like
guns, bombs, and knives. Fortunately, most bags do not contain threats, meaning that, most
of the time, the screener’s task is to decide when it is time to abandon the search without
finding a target. The stimulus is complex and could be examined for a long time, but, in that
case, the line at the checkpoint would become unacceptably long. Of course, quitting too
soon raises the possibility of missing a real threat (Wolfe, Horowitz, & Kenner, 2005), an
error with far more consequence than a longer security line.

Similar search termination issues are raised in medical radiology. If you are screening
mammograms for breast cancer, you do not want to miss any cancers but, at the same time,
you need to get through all of the cases. When is it time to move to the next case? The
radiology situation has some interesting characteristics that differ from the checkpoint
search (beyond the obvious differences of stimulus materials). At the checkpoint, once a
single gun is found, the search is done. In radiology, it is often important to find all of the
signs of cancer (or whatever the radiologist may be looking for). Thus, in the medical
setting, even if a ‘target’ has been found, there is still a search termination question. How
sure are you that you have found everything that needs to be found in this image? The
probability of missing a target is higher if another target has been found; a problem known
as “satisfaction of search” (Berbaum, Franken, Dorfman, Caldwell, & Krupinski, 2000;
Berbaum et al., 1990; Fleck, Samei, & Mitroff, 2010; Nodine, Krupinski, Kundel, Toto, &
Herman, 1992).

In this chapter, we will focus on the fundamental mechanisms of search termination with
allusions to these more applied topics but without a full treatment of them. We will trace the
development of ideas about search termination from early ideas about serial exhaustive
search to a more plausible account and some pointers toward possible future progress.

How shall we model the target absent trials?
Model 1: Serial Self-terminating search

Consider a basic search task, as shown in Figure 1: Here you are looking for a target “T”
among distractor, “L”s. In an actual experiment, we would arrange for the items to be large
enough that acuity is not constraining performance. Typically, we would vary set size – the
number of items in the display -and we would measure reaction time (RT) and accuracy. In
cases where the display is visible until the observer responds, it is the RT data that are of
most interest. An experiment of this sort would very typically produce data that look
something like those shown in Figure 2. The measure of greatest interest is the slope of the
RT x set size function. In a task like this, slopes are typically in the range of 20–40 msec/
item for target present trials and something more than twice that for target absent trials.

This pattern of results suggested a serial self terminating search to Anne Treisman
(Treisman & Gelade, 1980) following similar ideas in memory research (Sternberg, 1966).
The idea, as illustrated in Figure 3 was simple and reasonable. Items would be selected, at
random, one after another until the target was found or until all items were rejected. If there
were N items, the target would be found, on average, after (N+1)/2 selections from the
display. The display could be rejected after all N items were examined. The result should be
a slope ratio of close to 2:1. Treisman’s data were consistent with this 2:1 prediction.

There are problems with Model 1. With more extensive data sets, it turns out that the search
ratio in search tasks of this sort is typically significantly greater than 2:1 (J M Wolfe, 1998).
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For the data shown in Figure 2, for example, the hypothesis that Absent Slope = 2x(Present
Slope) can be rejected (paired-t test, 2xPresent-Absent; t(19)=2.5, p=0.023). For these data,
the average slope ratio is 2.5:1, very similar to what was found in Wolfe (1998). Note also
that the variability of the absent trials is much higher than that of the present trials. This is
also true for the RTs of individual observers contrary to what might be expected from a
simple serial self-terminating model. After all, on absent trials, search always ends after all
N items have been rejected while, on present trials, search could end after the first
deployment of attention or the last or after any number of deployments between 1 and N.
Playing Around with Mean vs. StDev:

The critical problem with a simple serial, self-terminating account is found in a classic
experiment of Egeth, Virzi, and Garbart (1984). They didn’t use Ts among Ls but using
those stimuli as an example, imagine that half the elements were red and you were told that
the target was black. You would not spend time examining red items and you would not
need to search those red items in order to declare that the target was absent on blank trials.
In an experiment of this sort, search slopes on target present trials would be reduced by
about half of what is shown in Figure 2. The absent slopes would be similarly reduced,
suggesting that Os searched through only half the items. These and related results require a
modification of the serial self-terminating model.

Model 2: Serial self-terminating search in a subset
The obvious modification in the basic serial self-terminating model is to propose that the
search is terminated after an exhaustive search through the relevant subset. In the example
given above, that would be the set of all red items. This model also runs into difficulties.
One challenge comes from conjunction search tasks of the sort shown in Figure 4.

In this task, Os look for a target defined by the conjunction of two features; here, the light
red vertical item. Treisman had originally proposed that conjunction searches produced the
same pattern of results produced by searches like the T vs L example (Treisman & Gelade,
1980). However, subsequent research showed that conjunction searches could be much more
efficient with shallower slopes (Nakayama & Silverman, 1986; Sagi, 1988; J.M. Wolfe,
Cave, & Franzel, 1989; Zohary & Hochstein, 1989). How should observers perform on
absent trials? If the relevant subset was the set of items that were EITHER red OR vertical,
then the subset is the entire set – and that cannot be right. The slopes are too shallow. If the
subset was the set of items that were BOTH red AND vertical, then the subset is empty on
target absent trials and the slopes are too steep to support that assumption. Neither of these
possibilities describes observers’ behavior. They produce slopes on absent trials that are
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about twice the slope of target present trials. An example, from the same observers, shown
in Figure 2, is shown in Figure 5.

One might propose that Os searched through half the items, based, perhaps, on color.
However, that version of a subset-search hypothesis can be rejected. When observers are
forced to search through a subset based on color, performance looks very different from
performance in standard conjunctions searches of the type illustrated in Figure 4 (Friedman-
Hill & Wolfe, 1995). Moreover, some conjunction searches can be very efficient, with
slopes near zero (J Theeuwes & Kooi, 1994). This is another challenge to any model that
proposes that blank trials involve an exhaustive search through a feature-defined subset of
items.

We will point to another challenge here and return to it later. A model based on exhaustive
search through the set of items or some subset of items is plausible when the stimuli are
well-isolated items on a blank background, as in typical laboratory search experiments (and
as in Figures 2 & 4). It is much more difficult to implement such a model in a real scene
because it is all but impossible to decide what the set size might be (Neider & Zelinsky,
2008; (Jeremy Wolfe et al., 2008). Look at the scene in front of you and try to decide what
the set size might be. Still, an exhaustive search through some subset might still be a
plausible model if a way could be found to define the subset.

Model 3: Serial Self-Terminating Search up to an activation boundary (Guided Search 2.0)
A version of this type of subset search was proposed in Guided Search 2.0 (J M Wolfe,
1994). In all of the incarnations of the Guided Search model, attention is guided by basic
attributes of the stimulus such as color, orientation, size, et al. (Jeremy M Wolfe &
Horowitz, 2004). As noted earlier, guidance comes in two forms. Attention is guided to an
item in a bottom-up, stimulus driven manner if an item differs from its neighbors in a
guiding attribute (red among green, vertical among horizontal, and so forth). As discussed
extensively by Duncan and Humphreys (1989), the greater the difference between target and
distractors, the easier a search will be (red among green is easier than red among orange).
The greater the featural heterogeneity of the distractors, the harder the search will be (red
among homogeneous orange distractors is easier than red among a variety of different
colors).

Guidance can also be top-down, user driven. In Figure 4, bottom-up activity is essentially
noise. Effective guidance to the light red vertical item comes from top-down guidance to red
and to vertical. In Guided Search, each of these sources of guidance contributes to an overall
activation map. Attention is directed to the most active item/location in that map. The map
must be degraded by noise. Otherwise, a search like the conjunction search of Figure 4
should yield a slope of zero because the target is the only item with two target attributes. In
the absence of noise, guidance to red and to vertical would lead directly to the one red
vertical item first time, every time. Some of the noise will come from bottom-up activation.
The juxtaposition of red and green or vertical and horizontal items makes those items
salient. That salience is not useful.

When the sources of guidance, useful and otherwise are summed up and some noise is
added, the result will be that targets in a search like the conjunction search of Figure 4 will
have some activation drawn from a distribution and different distractor types will have
activations drawn from lower but overlapping distributions. If attention is directed to the
most activated item, that first item will be the target on some trials but on other trials some
distractors will be examined before the target is reached. Returning to the absent trials, a
reasonable approach would be to set an activation threshold below which only very few
targets are ever found. That threshold could define the subset on each trial and unsuccessful
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searches could end after an exhaustive search through that subset. If a target was not found
in the set of items above the threshold activation, then it is time to quit.

Data like those shown in Figure 3 constrain the placement of the activation threshold in this
model. If the threshold is set to examine only items with high activation, then search will be
abandoned on too many target-present trials before the target is attended and the miss error
rate will be too high. If the threshold is set too low, few targets will be missed but the RTs
will be too long. Given some assumptions about the noise in the activation values, it was
possible to use one set of parameters to simulate a substantial set of search experiments in
Guided Search 2.0, producing reasonable simulated target present and absent RTs (J M
Wolfe, 1994).

There is an important assumption underlying this model and, indeed, all of the models that
propose some sort of exhaustive search through some set of items on absent trials. To do an
exhaustive search, one needs to know which distractors have been rejected. Put differently,
search needs to sample without replacement from the display. Many models of search
assumed such sampling and a mechanism, inhibition of return, had been proposed (R. Klein,
1988). Unfortunately, the assumption does not appear to be correct.

In 1998, Horowitz and Wolfe (1998) tried to test the assumption directly. They asked, what
would happen if search were forced to be sampling with replacement? Their “dynamic
search” method is illustrated in Figure 6.

In Dynamic Search, observers see a sequence of frames. The items are the same on each
frame but they are randomly replotted each time. A target item will be present on every
frame of a target present trial and on no frames in absent trials. Dynamic search must require
sampling with replacement, unless the search can be accomplished in a single frame. It can
then be compared to a standard, static search condition. If, as required by the models
sketched so far, rejected distractors are remembered in static search - that is, if static search
is sampling without replacement - then there is a clear prediction for the relationship of
slopes in the dynamic and static conditions. If standard, static search produces a slope of N
msec/item, dynamic search, sampling with replacement, should produce a slope of 2N msec/
item (Horowitz & Wolfe, 2003).

The results rejected this hypothesis. In Horowitz and Wolfe (1998), the frame rate was 10
Hz. The slopes on target present trials were essentially the same in static and dynamic
conditions. Horowitz and Wolfe reasoned that dynamic search had to be search with
replacement. Thus, if static search produced the same result, it followed that static search
was also search with replacement and they titled their paper “Visual search has no memory”.
Vigorous controversy ensued (Dodd, Castel, & Pratt, 2003; Gilchrist & Harvey, 2006;
Horowitz & Wolfe, 2003; A Kristjansson, 2000; Peterson, Kramer, Wang, Irwin, &
McCarley, 2001; Shore & Klein, 2000). Figure 7 shows the results of a replication of the
original dynamic search result from Horowitz and Wolfe (2003). This time the frame rate
was 2Hz, large set sizes were used, and in one version of the dynamic condition, targets
could only appear in a few display positions, unknown to the observer. This was done to
thwart “sit and wait” strategies in which the observer might pick one location and simply
wait for the randomly plotted target to appear (von Muhlenen, Muller, & Muller, 2003). The
results, shown in Figure 7, again show dynamic and static search having similar slopes.

If visual search really had no memory, one would think that perseveration would be a
serious problem. Imagine that there was one salient distractor in the display. In the no
memory account, what would keep attention from continuously revisiting that item?
Moreover, the papers cited above that responded to the original “no memory” claim, make a
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case there is at least some limited memory in visual search. For methodological reasons, it is
hard to differentiate between the consequences of a little memory and no memory in the
dynamic search task. Perhaps the most plausible position is that “inhibition of return is a
foraging facilitator in visual search”(R. M. Klein & MacInnes, 1999). That is, perfect
memory for the rejected distractors does not exist but there is enough inhibition to prevent
perseveration and to bias attention toward new items. This seems reasonable but, returning
to the problem of absent trials, the models presented thus far rely on perfect memory for
rejected distractors, and that does not exist. A different type of model is needed.

Model 4: Timing or counting models
Even if the observer cannot rely on perfect memory for every deployment of attention, there
is little doubt that he is accumulating some information about the ongoing searches. Suppose
that an observer had information about the mean time required to find the target and the
variance of that time. He could set a threshold in time rather than in activation. “If I search
for N msec without finding the target, the probability that I will find a target is low enough
that I might as well quit.” Observers would not, in fact, need to compute the mean and
variance (implicitly or explicitly). Suppose that an adaptive process changed the quitting
time on blank trials based on feedback from the ongoing sequence of trials. Threshold would
be decreased and observers would quit more rapidly after correct responses and the
threshold would increase after errors. If the step size on this ‘staircase’ is set appropriately, it
would estimate a quitting threshold that would produce an acceptable error rate (Chun &
Wolfe, 1996). As an alternative to measuring time, the observer could count rejected
distractors (sampled with or without replacement, it would not matter) and could quit after
sampling some threshold number of items. As with a timing threshold, a counting threshold
could be based on the number of items sampled in order to find targets on previous trials.
These timing or counting models can be implemented with diffusion (Ratcliff, 1978) or
accumulation (Brown & Heathcote, 2008; Donkin, Brown, Heathcote, & Wagenmakers,
2011) methods. In either case, search is terminated when the accumulating or diffusing
signal reaches a termination threshold. That threshold, as noted, would go up in response to
error and down in response to correct responses.

Chun and Wolfe (1995) looked for evidence for this adaptive mechanism. They ran
observers in a triple conjunction (color X size X shape) task at a single set size of 25. Os
made 3.3% miss errors in an easy version of the task and 8.0% errors in a harder version.
Chun and Wolfe looked at RT as a function of the position of a trial, relative to a miss error.
The results, replotted from the original paper, are shown in Figure 8. It can be seen that RTs
become faster after correct trials and markedly slower after a miss error.

In a function of this sort, we can see the searcher, estimating how long it should take to
complete a search with an acceptable number of errors. However, there are a number of
complications. First, the time for a given search is obviously dependent on how many items
are present in a display. A timing or counting threshold that was established using one set
size would be obviously incorrect for another set size. In practice, any such quitting
threshold must be set relative to the set size on the current trial. We know this because
performance on absent trials in standard search tasks does not change markedly whether set
sizes are blocked or mixed. (J M Wolfe, Horowitz, Palmer, Michod, & VanWert, 2010).
This raises a second problem. If observers can adjust the quitting criterion based on the set
size, they must be able to derive that set size at the start of the trial. Since we know that
exact counting is only possible in the subitizing range of up to about 4 items (Trick &
Pylyshyn, 1994), set size must be an estimate based on our ability to roughly enumerate
larger number of items (Krueger, 1984; Dehaene, 1997).
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To recap, the working model would now say that the observer, at the start of a trial, makes
an estimate of the set size and then sets a quitting threshold. It could be a counting threshold.
In that case, the threshold would be set as some constant times the estimated set size. The
constant would go down if the search could be based on a subset (I only need to search the
25% of objects that are green). It would also depend on whether search was sampling with
or without replacement or somewhere in between. Alternatively, search termination could be
based on a timing threshold, based on a calculation of the average time per item that must be
devoted to the display, in order to produce a reasonable error rate. Models of this sort will
run into problems when the observer is confronted with a real scene, as opposed to a display
containing a countable number of items. As noted earlier, we simply have no idea how to
count the number of searchable items in a real scene. We have some ideas about how to
approach this problem. Observers can probably extract an “effective” set size (Neider &
Zelinsky, 2008) from the scene based on a variety of rapidly computed aspects of the gist of
the scene (J M Wolfe, Vo, Evans, & Greene, 2011); (M. L.-H. Vo & Henderson, 2010);
Oliva 2005). Thus, for example, if you are looking for your thumb drive, objects the size of
your computer screen probably do not enter into the calculation of effective set size.
Moreover, this size constraint is probably calculated in three dimensions and not just in the
image plane. Layout in depth is calculated quickly (Greene & Oliva, 2009) and so the book,
located across the room, that happens to subtend the same visual angle as a much closer
missing thumb drive, nevertheless, is not a candidate for search because it is the wrong size
in 3D even if it would be plausible in 2D (Sherman, Greene, & Wolfe, 2011).

Beyond figuring out the effective set size in a scene, other properties of the scene will be
important as well. Guidance by basic features like color will enter into the calculation of a
quitting time. If you are looking for your car, it will make a great deal of a difference if the
car is an unusual shade of lime green or not. If that unusual color is not present in the visual
field at all, you are likely to be able to abandon the search for the lime green car rapidly. The
search for a more generic silver gray car will not be abandoned so quickly because your
initial assessment of the scene will give you more hope that it is present, even if it is not. In
addition, clutter and crowding become issues in real scenes (Mary J Bravo & Farid, 2004;
Felisberti, Solomon, & Morgan, 2005; Levi, 2008; Rosenholtz, Chan, & Balas, 2009;
Vlaskamp & Hooge, 2006). Even if all the other factors are controlled, intuition holds that
the search for a fully visible carrot peeler will be harder in a jumbled kitchen drawer than in
a neat one. No one really knows how to compute clutter or crowding for these purposes,
though progress is being made (Mary J. Bravo & Farid, 2008); Rosenholtz et al., 2009).

Nevertheless, we can modify the current story to run as follows: When the scene (or an
artificial search display) is presented to a viewer and a search task is defined, a quitting
threshold is set based on an assessment of the gist of the scene. That gist will include an
estimate of the number of candidate targets. Candidate targets will be defined by their basic
features and a variety of scene-based properties. The threshold will be further adjusted on
the basis of an estimate of the ease with which candidate targets can be located and analyzed
amidst whatever noise, clutter, or other obstruction is present. Diffusion or accumulator
models can use a signal that measures time or that counts rejected items. Search can be
terminated when that signal reaches the quitting threshold.

Target Prevalence
One factor that has not been mentioned but that has a substantial effect on search
termination is the likelihood that a target is present. Returning to that carrot peeler, you
should search for a longer time in the jumbled gadget drawer in your kitchen than you
should search in a drawer in your office, even if we arrange for the two drawers to be
visually equivalent. The prior probability of target presence is simply much higher in the
former case than the latter. Moving from intuition to data, Wolfe, Horowitz, and Kenner
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(2005) had observers search for black and white objects on a noise background. In different
blocks, the targets were present on 50%, 10% or 1% of trials. These are quite laborious
experiments since it takes 2000 trials to collect a mere 20 target present trials at 1%
prevalence. Nevertheless, even with the limited statistical power imposed by the relatively
small number of present trials, the results are dramatically clear, as shown in Figures 9 and
10.

Figure 9 shows the miss (“false negative”) error rates. Miss errors are much higher at low
prevalence.

Figure 10 shows the RT data. The data for 50% target prevalence show the typical RT x set
size functions with absent trials being slower than present and having a slope of somewhat
more than twice the present trial slope. In dramatic contrast, in this experiment, the absent
RTs are actually shorter, on average than the present trial RTs. This RT result is somewhat
more dramatic than usual. However, it is obvious that prevalence has a very substantial
effect on target absent trials and that effect is not accounted for in the model sketched above.
The basic prevalence result has been replicated many times (M S Fleck & S R Mitroff, 2007;
Godwin et al., 2010; Lau & Huang, 2010); Kunar, Rich, & Wolfe, 2010; VanWert, Wolfe, &
Horowitz 2009). There is always a rise in miss errors and a fall in target absent RTs as
prevalence falls.

These effects of target frequency have been anticipated in tasks other than visual search.
What has been called Hick-Hyman Law proposes RT increases with the number of
alternatives (takes longer to respond with one of four keys than with one of two) and this has
been taken to reflect a general relationship between stimulus frequency and RT (Hick, 1952;
Hyman, 1953; (V. Maljkovic & Martini, 2005). Moreover, in the vigilance literature, RT has
been shown to increase as signal frequency decreases (Parasuraman & Davies, 1976). The
vigilance literature also documents the rise in miss errors as signal frequency decreases
(Colquhoun & Baddeley, 1967; Mackworth, 1970).

The prevalence effect is a potentially important phenomenon beyond the lab because a
number of critical search tasks are low prevalence search tasks. Clear examples include
medical screening (Ethell & Manning, 2001; Gur et al., 2003; Kundel, 1982) and airport
baggage screening. In each case, the target is very rare and in each case, miss errors are very
undesirable. At the same time, the professionals doing these tasks are under time pressure to
get through the workload. Is low target prevalence a source of errors in the field in any of
these domains? Experiments are in progress as this is being written. We do know that
expertise is not insulation against these effects. In one experiment, two groups of cytology
technicians, who read Pap smear, cervical cancer tests, examined photomicrographs of cells.
Each group read one set of stimuli at 50% prevalence and another at low prevalence, either
2% or 5%. One group simply rated slides on a 4-point normal/abnormal scale. The other
group also localized apparent abnormalities. In the first group, false negatives/miss errors
were 17% at higher prevalence and 30% at low prevalence. In the second group, false
negative rates rose from 27% to 42% (One cannot make comparisons between the two
groups because the stimulus sets were different). Incomplete data collection strongly
suggests that other search experts will prove to be just as vulnerable to the prevalence effect
as observers in the lab.

With miss errors going up at low prevalence and RT going down, an obvious thought is that
the prevalence effect is nothing but a speed-accuracy tradeoff. Fleck and Mitroff (2007)
made an argument of this sort. It was based on data that showed that they could eliminate
the prevalence effect if they simply allowed observers to rescind responses that they knew
were in error. Everyone who has done visual search RT studies knows this phenomenon.
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You commit yourself to making target absent motor response. Then you find the target a
moment later but it turns out to be a moment too late to recall the motor act.

There are a number of reasons to think that, while errors of this sort occur, they are not
responsible for the main prevalence effect of interest. Most importantly, a speed-accuracy
trade-off should represent a loss of sensitivity at low prevalence. (NOTE: We are using
“sensitivity” to refer to what is indexed by d’ or the area under an ROC curve in signal
detection experiments. This is different from the usage in the medical community where
sensitivity refers to the “hit” rate (P(correct|target-present)). The medical literature uses
“specificity” to refer to the true negative rate (P(correct|target-absent)). In our original
experiments and in the Fleck and Mitroff (2007) study, there were very few false alarm
errors, making signal detection measures unreliable. When we used a simulated baggage
search task that produced false alarms, it became clear that prevalence had its primary effect
on response criterion, not on d’. The data shown in Figure 11 illustrate the point. The data
come from an experiment in which prevalence varied sinusoidally over the course of 1000
trials from near 1.0 to near zero and back to 1.0 (J M Wolfe & VanWert, 2010). Each data
point represents 50 trials from each of 13 observers. The color and shape coding of the
points show the prevalence for those 50 trials. Clearly, the data points slide along a receiver
operating characteristic (ROC) curve with low prevalence conditions characterized by high
miss errors and low false alarms (conservative criterion) and high prevalence showing low
miss errors and high false alarms (liberal criterion).

Figure 12 shows sensitivity (d’) and criterion (c) for the data presented in Figure 11. In a
wide range of prevalence experiments, d’ tends to be somewhat higher at low prevalence
than at higher prevalence (Kundel, 2000; (J M Wolfe et al., 2007). As can be seen, this
appears to be the case in Figure 12. The effect is significant if all data points are included (r-
sq = =0.40, p=0.0025). If the extreme points are excluded on grounds that they are very
unstable, the relationship is marginal (for prevalence between 0.1 and 0.85, r-sq=.32,
p=0.053). This is probably an artifact of the underlying assumption that the “signal” and
“noise” distributions are of equal variance. ROCs like the one shown in Figure 11 become
straight lines if plotted on Z-transformed axes. If the variance of the signal and noise
distributions are the same, the resulting zROC has a slope of 1. Slopes in these prevalence
experiments tend to be less than 1 (0.6 for the data in Figure 11). However, any of the
various ways to deal with unequal variance retain a strong relationship of criterion to
prevalence (in various approaches, r-sq > 0.75, all p < 0.0001). The dependence of criterion
on prevalence in search is anticipated in non-search tasks where changes in event frequency
produce criterion shifts, rather than changes in sensitivity (Healy & Kubovy, 1981; Swets &
Kristofferson, 1970).

Another line of evidence suggesting that prevalence effects are not simple speed-accuracy
tradeoffs comes from the RT data. If prevalence effects were simple speed-accuracy
tradeoffs, we might expect that target-present responses or, perhaps, all responses would
become very fast at very high prevalence when observers could respond “present” with a
good chance of being correct, no matter how quickly they pressed the key. However, as can
be seen in Figure 13, there is a fairly modest effect of prevalence on target present trial RTs.
There is a much larger effect on absent trials with very slow RTs accompanying the highest
prevalence.

Prevalence is changing both speed and accuracy. However, as discussed in Wolfe and
VanWert (2010), we need to think about two different criteria, each of them influenced by
target prevalence. Thus far, we have been talking about a search termination threshold or
criterion. When some accumulating quantity like elapsed time or number of items attended
reaches that threshold, search ends, presumably with an “absent” response on most trials.
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While this accumulation to a termination threshold is ongoing, there are other decisions that
need to be made about every attended item. Is that item a target? These 2-alternative forced-
choice decisions must have their own criterion. Prevalence alters both the search termination
threshold and the target/non-target decision. As prevalence goes down, the search
termination threshold comes down; observers are willing to abandon search sooner. At the
same time, the 2AFC target/non-target decision criterion becomes more conservative;
observers are less willing to declare that an item is a target. There are various lines of
evidence to suggest that these are dissociable criteria. One of these is Experiment 2 of Wolfe
et al. (2007). In an effort, to “cure” the prevalence effect, Wolfe et al., forced observers to
slow down their responses. An initial block of 50% prevalence trials established the average
time required to find targets. In a subsequent low prevalence block, the computer produced a
warning whenever an absent trial RT was below 1.3X of that average. This had the desired
effect – observers learned to slow their average target absent RTs by over a second (from
<1500 msec to > 2500 msec). Once behavior stabilized, they required warnings on only a
few trials. Apparently, they had reset the termination threshold. However, there was no
significant impact on errors. Miss errors remained much higher at low prevalence than at
higher prevalence. While this was a setback in the quest to find a way to reduce miss errors,
it does show that time to search and decisions about attended items are governed by
dissociable responses to prevalence.

Estimating Prevalence
As noted above, the observer must estimate the set size, crowdedness, and/or clutter in a
display in order to set a search termination criterion. Similarly, the observer must estimate
the prevalence, if prevalence is going to have an influence on performance. One could
imagine the estimate of prevalence being set by the prior history of the search. The
frequency with which you find the target before the current trial would produce the estimate
of the prevailing prevalence on this trial. Alternatively (or additionally), the estimate of
prevalence could be based on top-down, semantic knowledge from outside of the search
itself. That is, you could be told that the prevalence is 2% or 50%. Under real world
conditions, versions of both types of information are present. A radiologist knows that breast
cancer is rare in a screening population and knows that she has found very few cancers in
this collection of cases. Lau and Haung (2010) found no effect of explicit instruction on
error rate and concluded that the prevalence effect is based entirely on past history with the
task. However, Ishibashi et al, (2011) have subsequently reported a small effect of
instruction on RT.

If prevalence effects are based on prior history, how much prior history is being taken into
consideration. In the experiment described above (Figs 11–13), Wolfe and VanWert (2010)
varied prevalence sinusoidally over 1000 trials and found that error rates and RTs also
varied in a roughly sinusoidal fashion. Given this variation in prevalence, each prevalence
value was experienced twice, once as prevalence was falling and once as it was rising back
to 1.0. Based on the difference between performance at the same prevalence value in the
rising versus the falling portion of the sinusoid, Wolfe and VanWert concluded that Os were
using a prevalence estimate based on 40–50 trials. However, this may not be the best
estimate of what we can call the “prevalence window” because the prevalence is changing
and it is changing in a predictable manner.

How wide is the prevalence window when the prevalence for a block of trials is fixed? Even
if overall prevalence is fixed, there will be local variations. Consider 8 successive trials from
an experiment with an overall prevalence of 50%. Chance variation might produce 3 target
present trials in one sequence, 7 in another, and so forth. Figure 14 shows the effects of just
such random fluctuations in local prevalence for a window of 8 trials averaged over the data
from 20 observers. The data happen to be taken from a search for a 2 among 5s (a task that
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will produce very few false alarm errors). Other data sets produce similar results. This
particular data set includes variation in set size (5–20), which will introduce large variability
into the absent RTs. Nevertheless, as can be seen, there is a substantial and significant effect
of random fluctuations in local prevalence on absent trials RTs (p = 0.04). Target present
RTs show no dependence on local prevalence (p=0.83).

To estimate the prevalence window, we measured the correlation between RT and the local
prevalence for windows of different sizes. Figure 15 gives the results of this analysis for a
different data set; this time, a large data set where we collected 4000 trials per subject per
condition in order to examine RT distributions (J. M. Wolfe, Palmer, & Horowitz, 2010).
The large number of trials improves the statistical power of the analysis since, as can be seen
on the y-axis of Figure 15, while prevalence effects are reliable and quite large, they do not
account for much of the variance in an experiment of this sort. Here the maximum
correlation occurs in the range of 5–8 trials, suggesting a fairly small prevalence window.
Interestingly, this is comparable to the range for priming of pop-out (V Maljkovic &
Nakayama, 1994). In that paradigm, the color of items going back about 8 trials into the past
has an impact on the RT of a pop-out color search on the current trial.

Value: One more factor
The discussion thus far has failed to consider how badly you want to find whatever it is that
you might be looking for. It seems quite obvious that this, too, will have an effect on search
termination. You would search for a lost 20 dollar bill for longer than you would search for
a 1 dollar bill. This example has the added virtue of making it intuitively clear that the effect
of value on RT will be an effect on target-absent RTs. The 1 and 20 dollar bills are
essentially the same visual stimulus. Thus, the time to find the bill, if the bill is successfully
found, is unlikely to depend on its value. It is the time devoted to unsuccessful search that
will be influenced by value.

There has been a recent uptick in interest in the effects of reward in visual search (Hearns &
Moss, 1968; Hickey, Chelazzi, & Theeuwes, 2011; Hickey & Theeuwes, 2008; (A.
Kristjansson, Sigurjonsdottir, & Driver, 2010). However, as with most other topics in
search, much less attention has been devoted to the impact on target absent trials. There has
been some discussion of reward in the context of the prevalence. After all, if one is
concerned that low prevalence is pushing observers toward elevated miss errors, one should
be able to move them the other direction on the ROC by changing the payoff. There is some
evidence that prevalence effects are resistant to manipulations of payoff (Healy & Kubovy,
1981; Maddox, 2002) and Wolfe et al. (2007) argued that it would not work in settings like
airport security and medical screening. However, more recent work shows that, if deployed
correctly, payoff manipulations can affect the error rates, counteracting the prevalence effect
(Navalpakkam, Koch, & Perona, 2009). There is a need for work on reward effects on
reaction time.

Moving to the next field
The model we have been sketching asserts that the observer in a visual search task is
monitoring the time spent searching or the amount of searching that has been done. Search is
terminated when the relevant quantity reaches a search termination threshold. On a given
trial, that threshold is set by an estimate of the number of items in the display and an
assessment of the difficulties imposed by crowding and clutter. The threshold is also
influenced by the likelihood that a target is present. This estimate of prevalence seems to be
based on recent search history and, perhaps, on something more like semantic knowledge.
You don’t need to have looked for President Obama multiple times in order to understand
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that he is unlikely to be in your kitchen. Finally, the termination threshold is influenced by
the intrinsic value of the search target.

Now let us re-imagine the task. Suppose that each search display is a patch of a habitat in
which some animal is searching for its food. In each patch, there either is or is not a food
item. That assumption, convenient for 2AFC tasks, might not be entirely realistic but, if one
imagines fairly sparse, evenly distributed food and patches of the right size, it is not a bad
assumption. Described this way, visual search has much in common with foraging problems,
as studied in Behavioral Ecology (Stephens & Krebs, 1986). The search termination
problem becomes what is known as the “patch leaving” problem. When should our animal
stop searching/foraging in one patch and move to the next?

Unlike visual search, where search termination is a bit of an orphan problem, patch leaving
in behavioral ecology has attracted a lot of attention. Many accounts are versions of
Charnov’s Marginal Value Theorem (Charnov, 1976) which asserts that the animal should
move when the marginal rate, the rate at which resources are being extracted from the patch,
drops below the average rate of return for the environment. If you imagine picking berries
from a bush, you pick at some rate. At some point, the rate begins to drop as the bush is
depleted. It is time to move to another bush once the rate drops to a point below the average
rate at which your berry bucket is filling up. If it takes a long time to get to the next bush,
you should stay longer on the current bush because that travel time reduces the average rate
of return.

Simple versions of the marginal value theorem assume that the average rate is known and
uniform (Pyke, Pulliam, & Charnov, 1977). Realistic complications ensue if you endow the
animal with an ability to sense the distribution of resource in an uneven habitat. Other
variables might include how long it takes to consume an item or whether one type of item is
more common than another.

It is not hard to map foraging variables to visual search variables. The various factors that
influence the slope of RT x set size functions are influencing the observer’s rate of return;
how many targets he eats per unit time. Endowing the observer with preattentive processes
that give that observer the numerosity of a display and guide his attention to likely targets
are like the processes that would allow an animal to notice that one patch appears to be more
promising than another. Attentional limits have been proposed to constrain behavior in
foraging as well as in the search domain (Dukas, 2002, 2004). This is not to say that there is
a trivial equivalence of issues in search and in foraging. However, the rich theoretical work
in behavioral ecology provides a promising habitat for visual search researchers. The control
and comparative ease with which visual search data can be collected represents an
opportunity to test some of those theories.

A brief conclusion
The search termination problem is important. Many searches get terminated without success.
Searches for unknown numbers of targets always face a termination problem. Search too
long and you are perseverating. Quit too fast and you are leaving too many targets
undiscovered. If the search is a search for a mate or food or cancer or a bomb in luggage, the
costs of poor performance can be very great. The topic is under-researched in visual search
but a basic model can be outlined on the basis of what we know (and can be implemented, at
least in one incarnation in the supplement to Wolfe and Van Wert, 2010). Figure 16 gives a
final summary.

We envision a search termination decision, based on how many items have been searched or
how much time has been spent in search. For any given search, there will be a search
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threshold, expressed in time or item units. Information about time or items will accumulate
toward that threshold in a noisy fashion (green arrows). The resulting distribution of RTs
will be positively skewed (Palmer, Horowitz, Torralba, & Wolfe, 2011; Van Zandt, 2002). If
the threshold is more liberal, observers will quit more rapidly. Factors that will move the
threshold to a more conservative position would be: 1) A greater number of relevant items
(larger set size, larger number of items with the correct features, etc), 2) More crowding and
clutter, making it harder to get information out of the image, 3) Higher target prevalence,
and 4) Higher value.

Analogous problems exist in other domains. Here, we briefly considered the relationship to
patch leaving in behavioral ecology. Ideas brought in from these neighboring fields should
allow us to make progress in figuring out when to quit.
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Figure 1.
A classic visual search for a T among Ls.
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Figure 2.
Data from 20 observers performing a search for a T among Ls. Dark black spots show
average correct target present RTs for each observer. Light red dots show correct target
absent averages. Larger symbols are group averages. Error bars are +/− 1 s.e.m. Lines are
best fit regression lines through the average points.
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Figure 3.
Cartooned deployments of attention in a serial, self-terminating search.
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Figure 4.
A conjunction search for the light red vertical item among light red horizontal and dark
green vertical distractors.
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Figure 5.
RT x set size data for a color x orientation conjunction search. Each dot represents the
average RT for one observer at one set size. Light red dots show absent trials. Black dots
show target present trials. Larger symbols are group averages. Error bars are +/− 1 s.e.m.
Lines are best fit regressions for the average points. The scale is the same as in Figure 2 for
purposes of comparison.
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Figure 6.
Dynamic Search: All items are randomly replotted on each frame (every 100 ms). A target,
if present, is present on every frame.
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Figure 7.
Dynamic search produces similar results to static search. Green, filled squares show
standard static search. Blue, open squares show dynamic search with random replotting of
items. Black filled diamonds show a version of dynamic search with targets constrained to
appear in a few locations. The red dashed line shows the predicted dynamic slope if static
search has full memory for rejected distractors. Replotted from Horowitz and Wolfe (2003).
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Figure 8.
Change RT relative to mean RT in a triple conjunction task, plotted with trials aligned to
Miss errors.
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Figure 9.
Miss error rates as a function of target prevalence and set size (results redrawn from Wolfe
et al., Nature, 2005).
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Figure 10.
RT x set size functions for 50% and 1% prevalence for the data shown in Figure 9. Green
squares show “hit” RTs, purple-Correct absent trials, and red asterisks show miss error RTs.
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Figure 11.
Receiver operating characterstic curve for an experiment with variable prevalence. Green
circles indicate lower prevalence (<0.5). Red squares indicate higher prevalence (> 0.5).
Data are taken from Wolfe and VanWert, 2010. Red ROC assumes an equal variance. Blue
ROC assumes unequal variance with a zROC slope of 0.6 (see text).
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Figure 12.
Change in sensitivity (d′) and criterion (c) as a function of prevalence in data taken from
Wolfe and VanWert (2010).
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Figure 13.
Reaction time as a function of prevalence. Average data derived from Wolfe and VanWert
(2010).
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Figure 14.
RT as a function of local prevalence; in this case, the prevalence as calculated from the
preceding 8 trials.
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Figure 15.
Correlation of the current RT with the prevalence over the previous N trials (the “window
size”).
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Figure 16.
Factors constraining search termination.
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