
CHAPTER 13

Visual Search

JEREMY M. WOLFE

WHY DO WE SEARCH?

Broadly defined, visual search is the act of
looking for something or a number of things.
It is reasonable, at the start of a survey of
the topic, to ask why we have to search at
all. Part of the answer is obvious, part is
more involved, and all of the answer has to
do with the fact that we are creatures with
limitations. To begin with the obvious, our
eyes are seeing only part of the world around
us at the present moment. The world extends
360 degrees around our heads, but our eyes
have a visual field of a bit over 180 degrees
in the horizontal dimension and, depending
on the configuration of our faces, about 90
degrees in the vertical dimension. If the target
of search is outside the current visual field,
we will need to move to point our eyes in the
right direction.

Within that large visual field, processing is
hugely uneven. In the fovea, each individual
photoreceptor commands what amounts to
its own optic nerve fiber. If there were one
optic nerve fiber for every photoreceptor in
the retina, the optic nerve would be too fat
to be practical. This constraint and others
result in extensive pooling of information
in the peripheral visual field. As a result,
visual resolution falls off dramatically as we
move away from the fovea (Green, 1970).
If detection requires more than very coarse
processing—for example, if one wants to

read any letter on this page—the target must
be brought to the fovea by moving the eyes.
It is important to note that while fixation of
the targets of search is common and often
necessary, it is not required in all cases.
Targets can be detected in peripheral vision
as long as their defining features can be
resolved in peripheral vision. Indeed, many
studies of search involve requiring observers
to hold fixation at one point while targets
and distractors are presented at peripheral
locations (e.g., Braun & Julesz, 1998; Car-
rasco, Evert, Chang, & Katz, 1995; Wolfe,
O’Neill, & Bennett, 1998). On the right side
of Figure 13.1, if you fixate on the central
“x,” you should be able to search successfully
for the letter “c” without moving your eyes.
When a basketball player is praised for his
peripheral vision, this does not mean that
he can read the newspaper 15 degrees from
fixation. It is more likely to mean that he has
trained himself to fixate at one location while
successfully searching for the receiver of his
next pass by deploying his attention to his
peripheral visual field.

The decline in resolution is only part of
the problem in peripheral vision. Targets
that are large enough to be resolved may
still be difficult or impossible to identify
in peripheral vision because of the crowd-
ing effects of other, nearby contours (Levi,
Klein, & Aitsebaomo, 1985). If you look at
the “x” at the center of the array on the left of
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Figure 13.1 While fixating on the “x,” it is much
easier to find the “c” in the right-hand display than
in the left.

Figure 13.1, you will find it hard to find the
letter “c.” If you look at the “x” on the right,
you will find that it is much easier to find
the “c.” In part this is because there are 12
letters on the left and only 8 on the right, but
the primary cause is that the nearby flanking
letters make the target “c” in peripheral
vision difficult to resolve. There are a number
of useful reviews of the phenomenon of
crowding (Levi, 2008, 2011; Pelli & Tillman,
2008; Whitney & Levi, 2011). For present
purposes, crowding represents another limi-
tation on our processing abilities that makes
it necessary to search (Rosenholtz, Huang, &
Ehinger, 2012; Wertheim, Hooge, Krikke, &
Johnson, 2006).

Perhaps the most interesting limitation
on our capabilities emerges if we search for
targets whose detectability is not limited by
the borders of the visual field, distance from
fixation, or crowding. This can be illustrated
if you search in Figure 13.2 for the plus that
has a green (darker) vertical component and a
purple (lighter) horizontal component. Hold-
ing fixation on the central “x,” you should be
convinced that you can find the target without
needing to fixate on the item. At the same
time, introspection should convince you that
this task does require covert search. While
it is immediately obvious that the display
consists of green (darker) and purple (lighter)
pluses, it is not clear how orientations and
colors are bound together in any particular
plus until that plus is scrutinized, even if it is
scrutinized without fixating on it directly.

Figure 13.2 The binding problem: Search for
the target with green (darker) vertical and purple
(lighter) horizontal components.

The Binding Problem

Figure 13.2 is an illustration of the “binding
problem” (Roskies, 1999; Treisman, 1986b,
1996; von der Malsburg, 1981; Wolfe &
Cave, 1999). The idea that there might be a
problem arose from the work that showed
that different portions of the visual cortex
appeared specialized for different functions
(e.g., Hubel & Livingstone, 1987). If color
was processed in one area and orientation
was processed in another, how did the organ-
ism as a whole know that a region of a
particular orientation possessed a particular
color? Treisman argued that visual selective
attention to a region was needed to bind the
features together. Indeed, Treisman’s original
thought was that, in the absence of attention,
features were “free floating” (Treisman &
Gelade, 1980). Illusory conjunctions were
her classic evidence for this idea.

Figure 13.3 illustrates the phenomenon,
albeit without appropriate experimental con-
trols. Look briefly at the figure and then
return to the text. Can you confirm the pres-
ence of a blue “D” or a green “C” or of an F
in diamond? In fact, the green C is present
but the D is red and the F is in a triangle.
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Figure 13.3 The binding problem: Look briefly
at this figure and return to the text.

The colors will be available only online, but
if you are reasonably convinced that you saw
a D that was not red or a C that was not green
or an F that was not in a triangle, you have
experienced an illusory conjunction. For
Treisman, illusory conjunctions were evi-
dence that the features were unbound. Others
argued that they might have been bound but
then forgotten (Tsal, 1989). Others noted
that these sorts of illusory conjunctions were
not limited to basic features. They could be
seen, for example, in word formation (Mozer,
1983) or in the attachment of colors to words
(Virzi & Egeth, 1984). Though research
has shown that the phenomenon is more
complex (for a review see Burwick, 2014),
illusory conjunctions do illustrate that the
connections between attributes of an object
are not necessarily clear before or after that
object is the current focus of attention. Treis-
man’s central observation about the binding
problem remains valid; object identification
generally requires an appreciation of the
relationship of different attributes of that
object. This binding of attributes requires
attention. As a consequence, identification

of a specific object requires that attention be
directed to that object. Hence, we need to
search. For much of the rest of this chapter,
we will be concerned with explaining why, if
this is so, we do not search at random. Given
a need to search, much of the work of our
human search engine is devoted to making
that search as efficient as possible.

The need to bind is not the only reason that
we need to search. Returning to Figure 13.2,
if you are viewing this online and the color
reproduction is good, you will be able to find
the one plus showing a different, yellower
shade of green. This was not obvious to
you in the absence of attentional scrutiny
and illustrates the fact that attention allows
observers to appreciate more subtle per-
ceptual distinctions (Yeshurun & Carrasco,
1998). It also improves spatial discrimination
(Yeshurun & Carrasco, 1999) and allows
for the individuation of items whose features
might otherwise be averaged together (Intrili-
gator & Cavanagh, 2001). Indeed, you may
find that the very qualia of the stimuli change
with the application of attention (Carrasco,
Ling, & Read, 2004). These are not binding
functions, but they, too, represent cases where
search would be required to find a specific
target (e.g., the item with that specific shade
of green).

A WORD ABOUT ARCHITECTURE
AND TERMINOLOGY

Preattentive

Consider Figure 13.2 once more. It is intro-
spectively clear that, on first glance, we can
perceive that the display consists of purple
and green pluses. It is also clear that the
identity of any one item as a purple-vertical
or green-vertical version is not immediately
available but requires search. This introspec-
tion is described at least as early as the 18th
century by the French philosopher Condillac
(1781). Several important conclusions follow.
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First, given that it can take a measurable
amount of time before a plus is selected
by attention and identified as, say, a green
vertical version, and given that something is
seen at that location before attention arrives,
it makes sense to talk about preattentive
processing. Defined in this manner, the term
is nearly tautological. If there is spatially
selective attention and if there are items that
have not yet been selected, there simply
must be some sort of preattentive processing.
Nevertheless, the term has been controver-
sial (Di Lollo, 2012a; DiLollo, Kawahara,
Zuvic, & Visser, 2001; Hochstein & Ahissar,
2002) because it often comes with other
theoretical assumptions attached. Building
on earlier ideas like those of Broadbent
(1958), Neisser’s (1967) formulation had
two distinct stages: preattentive and atten-
tive. With the rise of modern research on
visual cortical physiology, there also arose an
unfortunate, geographically concrete account
in which it was assumed that some pieces
of brain were “preattentive” processors of
single basic features like color or orientation
whereas other, later, areas were “attentive.”
The binding problem, as conceived by von
der Malsburg (1981), could be described as
the problem of binding together activity in
two or more preattentive loci in the brain. As
Di Lollo (2012a) points out, a strong form
of this view cannot survive the evidence that
many areas process multiple features simul-
taneously. Nor can preattentive geography
survive the evidence that massive feedback
connections make simple feed-forward,
preattentive-to-attentive stories implausi-
ble. Attention modulates even the earliest
stages of visual cortical processing (Gandhi,
Heeger, & Boynton, 1998; Wurtz & Mohler,
1976). It is more profitable to use “preatten-
tive” to describe the type of processing that
occurs before selective attention is deployed
and not to use the term to describe a preat-
tentive piece of the brain. At the very least, it

is important to acknowledge that the neural
locus of preattentive processing may be a
locus of attentive processing moments later.

If there is such a process as spatially selec-
tive visual attention, then the processing of
an item is preattentive before it is selected,
and, it is worth noting, the processing of that
item will become “postattentive” once selec-
tive attention has moved on to another item or
location (Wolfe, Klempen, & Dahlen, 2000).
The nature of postattentive vision has been
much less studied than the nature of the preat-
tentive representation, but it is worth think-
ing about in the context of the framework dis-
cussed so far. If an object must be selected in
order for its features to be bound and for the
object to be recognized, does that binding sur-
vive the departure of attention? This topic will
be considered later in this chapter.

Spatially Selective Visual Attention

Do we need the concept of spatially selec-
tive visual attention? Why not propose that
binding of features and recognition of objects
occurs everywhere at once, limited only
by the limits on peripheral vision (acuity,
crowding, etc.) and, perhaps, by the time
required to accumulate enough information
to support recognition? The answer is that
we lack the capacity. Tsotsos argues that this
is a fundamental computational constraint;
that the brain is simply not big enough and
cannot be big enough to process everything
in parallel across the visual field (Tsotsos,
1990, 2011). Object recognition involves two
massively parallel processes. As Condillac
(1781) noted, we can process some visual
attributes across the whole visual field in par-
allel. Object recognition must also represent
a massively parallel process in which a repre-
sentation of a visual object is matched against
the vast set of representations of objects held
in memory. What is not possible is the simul-
taneous matching of all items/regions in the
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visual world with all items in memory. In this
context, binding can be thought of as part of
this matching process, building a representa-
tion that can be matched against the contents
of memory. A more primitive sort of binding
seems to occur without attention (Houck and
Hoffman, 1986). It can be thought of as the
simple co-occurrence of two features (e.g.,
vertical and green) in the same place, perhaps
activating the same neurons, but not support-
ing recognition in the absence of attention.

Between the parallel front end of visual
processing and the parallel identification of
an object, there is a very tight bottleneck that
allows one or, perhaps, a small number of
objects to be identified at one time. Selective
attention is the name we give to the pro-
cess that governs access to this bottleneck.
Figure 13.4 gives an illustration of this bot-
tleneck (albeit one that could be explained in
other terms). If you fixate on each “x” from
top to bottom, you can read either the words
on the left or on the right or you can read
both sides in succession. However, it should
be clear that you cannot read both phrases
simultaneously.

Global Attention and Multiple
Attentions

Perhaps we can still dispense with the notions
of preattentive and attentive processing if we
label all vision as “attentive” and propose
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Figure 13.4 Move your eyes from x to x, top to
bottom, while trying to read left and right phrases
at the same time.

that what varies is only the degree to which
attention is spread over more or less of the
stimulus. Treisman and Gormican (1988)
proposed something like this when they
argued that “So-called preattentive search is
really search in which attention is distributed
widely over the whole display” (p. 43) (see
also Nakayama & Joseph, 1998). This is a
version of a “zoom-lens” theory of atten-
tion (Eriksen & St. James, 1986). However,
when attention is directed to a specific item
or location, the rest of the world does not
vanish, so one would need to propose global
and selective attention at the same time.
Di Lollo (2012b) would argue that, at this
point, one should simply “avoid the use of
such a nebulous and ill-defined concept as
‘attention’” (p. 308) and, with regard to the
term global attention he may be right. More
generally, however, it is useful to remember
that attention is not a thing or a single process
with a specific locus in the brain. It is what we
call the family of selective processes in the
nervous system. Just as we cannot recognize
every visible object at once, we cope with a
host of other capacity limitations by means of
various different attentional processes. You
cannot simultaneously process two speech
streams at the same time (Cherry, 1953).
Auditory attention mediates that limitation
(Shamma, Elhilali, & Micheyl, 2011). Until
it is mentioned here and now, you have not
been aware of the point of contact between
your body and whatever you are sitting on
(if you are sitting). See Stein (2012) for an
extended treatment of multisensory attention.
Examples of the multiple forms of attention
could be multiplied; see Chun, Golomb, and
Turk-Browne (2011) for a fine taxonomy.
In this chapter, unless otherwise specified,
the term attention will be shorthand for the
spatially selective visual attention that allows
some visual information to be bound and
allows objects to be recognized.
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CLASSIC VISUAL SEARCH TASKS:
STIMULI AND METHODS

To briefly recap, we have to search because
we lack the capacity to simultaneously iden-
tify everything in the visual field in a single
step. In the world, we search continuously
for specific objects (Where is my iPhone?),
for resources (e.g., dinner in the wild or in
the supermarket), for threats (What path shall
I pick through this dangerous-looking neigh-
borhood?), and so forth. These complex tasks
have been simplified and schematized into a
family of laboratory visual search tasks.

Classic search tasks involve search for
a target in an array of clearly individuated
items presented on an otherwise blank back-
ground. In early experiments, these were
often alphanumeric characters, presented
in orderly arrays (Egeth, 1967; Green &
Anderson, 1956; Neisser & Beller, 1965).
We tend to think of alphanumeric characters
as simple stimuli, but they are complex
shapes, so when interest began to focus on
the nature of preattentive visual processing,
classic search displays became arrays of even
simpler shapes (colored bars and the like),
often presented in quasirandom arrays or
on a circle at a fixed distance from fixation.
Originally, these might be drawn by hand and
presented in a tachistoscope (Treisman &
Gelade, 1980). The advent of computer
graphics vastly simplified the creation of
experiments of this sort (Enns, Ochs, &
Rensink, 1990).

Accuracy Methods

There are typically two behavioral measures
of interest in classic search tasks: response
time or reaction time (RT in either case) and
accuracy. In a typical RT study, stimuli are
presented until the observer responds. The
number of items in the display (the set size)
is varied from trial to trial, and the RT ×

set size function is analyzed (Treisman &
Gelade, 1980). Accuracy is tracked but usu-
ally merely to ensure that the error rates are
not so high that they would call the RTs into
question. As error rates rise in these tasks,
RTs decline: a “speed-accuracy trade-off”
(SAT; Heitz, 2014; Henmon, 1911) that can
distort the shape of RT × set size functions.
In experiments that focus on accuracy, the
stimuli are often presented very briefly, pre-
venting any role for voluntary eye movements
if the presentation is less than about 200 ms.
In many cases, the stimuli are masked with
another visual stimulus after presentation
to strictly limit the amount of time that the
stimulus is available. Again, set size can be
varied and the accuracy × set size function
becomes the measure of interest (Bergen &
Julesz, 1983a, 1983b). Alternatively, the
duration of the stimulus can be varied and
accuracy can be measured as a function of
that duration. Refining the latter method,
one might determine how long the stimulus
needs to be visible in order to obtain some
threshold level of performance (e.g., 80%
correct). That threshold could then be mea-
sured for different search tasks. For instance,
using this method, Verghese and Nakayama
(1994) measured the time required to detect
a difference in orientation between target and
distractor lines. The bigger the orientation
difference, the smaller the required duration.

The great virtue of the brief-exposure–
accuracy methods is the degree of control
they offer over the visual input. For example,
John Palmer performed experiments where
a fixed set of items was presented on the
screen. The effective set size was varied by
identifying a relevant subset of locations
at the start of each trial. In this way, every
trial could have the same items in the same
locations for the same length of time on
each trial (J. Palmer, 1994, 1995; J. Palmer,
Ames, & Lindsey, 1993) (see also Grind-
ley & Townsend, 1968). These methods
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convert search tasks into well-controlled,
two-alternative, forced-choice psychophysi-
cal experiments, making them amenable to
analysis by the tools of signal detection the-
ory (Verghese, 2001). The drawback is that
the methods and stimuli are quite removed
from real-world search tasks. All laboratory
tasks are abstractions of some real-world
question. These methods are, perhaps, more
abstract than most. They are most effective
in their ability to shed light on the effects of
attention on the initial phase of processing.

One useful version of brief-exposure–
accuracy methods is the speed-accuracy
trade-off (SAT) approach. The SAT was
mentioned previously as a problematic factor
that could be distorting RT measures, but
it can also be exploited deliberately. For
instance, observers can be taught to respond
within a narrow temporal window after the
onset of the stimuli. The response window
is indicated by a cue. By varying the timing
of this response cue, an SAT function can
be generated. It will rise from chance, when
observers must respond too quickly to some
asymptotic, best performance for that stimu-
lus. The shape of this function is diagnostic
of the type of processing occurring. For
instance, models with serial components pre-
dict changes in the rising portion of the SAT
curve. As set size increases, the curve rises
more slowly because the chance of finding
the target in some fixed time declines as set
size increases (Dosher, 1976; Dosher, Han, &
Lu, 2004; McElree & Carrasco, 1999), and
the results have been generally consistent
with parallel processing of multiple items in
the initial milliseconds of search. The method
is not well suited to seeing any subsequent
serial deployments of attention.

RT Methods

Reaction time or response time (RT) methods
come a bit closer to the normal experience

of search. Typically, observers search for a
target among a variable number of distractor
items. The stimulus is usually present until
response is made. The response might be
a two-alternative, presence/absence judg-
ment or a localization response in which the
observer must indicate the location and not
just the presence of a target. Observers are
typically tested for several hundred trials.
To conduct 50 trials per data point is not a
bad rule of thumb. Thus, 3 set sizes × target
present/absent yields 6 data points as shown
in the RT × set size functions cartooned in
Figure 13.5. A standard experiment might
have 10 to 12 observers, each performing
300 trials (obviously, details vary).

Accuracy is measured, but usually in the
hopes of being able to say that the error rates
are low enough to have only modest impact
on the RT × set size functions. In the classic
analysis of these functions, the slope gives the
most interesting information about search. It
is a measure of the rate at which items can be
processed. The intercept is a measure of the
time required for nonsearch processes (e.g.,
the act of making a response) (Posner, 1978).

If all items can be processed in parallel
without capacity limitations, the slope of the
RT × set size function would be expected
to be zero ms/item. If items are processed
in series, one after the other, then the RT
would increase linearly with the number of
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Figure 13.5 Hypothetical data from a search
experiment using RT methods.



8 Visual Search

items in the display. In the simplest case of
a serial, self-terminating search, the slope
on the target-present trials would be half the
time required to process as a single item. If
items are sampled randomly, observers will,
on average, sample half of the items before
stumbling on the target. If target-absent trials
require exhaustive search through all items,
then the slope for target-absent trials would
be twice that for target-present trials, a pat-
tern that is seen quite frequently (Treisman &
Gelade, 1980).

Unfortunately, whereas this is a quite
straightforward account of RT × set size
functions in search, there are many compli-
cations. First, and most important, although
it is true that a parallel, infinite-capacity
search will produce flat slopes and a serial,
self-terminating search will produce linear
slopes in a 2:1, absent:present ratio, it does
not follow that this pattern of results proves
this theoretical account of search. Many dif-
ferent processes can produce similar patterns
of RT × set size functions (Townsend, 1971,
1976, 1990; Townsend & Wenger, 2004).
Second, RT × set size functions are not
always linear (e.g., Pashler, 1987). Third, as
noted earlier, speed-accuracy trade-offs com-
plicate analysis, especially since observers
tend to make more “miss” errors at larger
set sizes. This means that RTs will be more
depressed at higher set sizes, artificially
curving the functions and lowering the slopes
(Dukewich & Klein, 2005, 2009). Given these
concerns (especially the first), it is unwise to
label a search task as “parallel” or “serial”
on the basis of the slope of the RT × set size
function. It is safer to use a theory-neutral
term like “efficiency” to describe the mean-
ing of a search slope (Wolfe, 1998). That is,
whatever the underlying process, a search
that produces an RT × set size function with
a slope of 5 ms/item is more efficient than a
search with a 30 ms/item slope. More items
can be processed every second—somehow.

Some researchers are very pessimistic about
the use of RT methods to uncover underlying
search processes (Kristjansson, 2015). Others
are more sanguine, especially when informa-
tion beyond the slope alone can be brought
to bear. For instance, RT distributions can
constrain the models that can account for the
results of this class of search experiments
(R. Moran, Zehetleitner, Liesefeld, Müller, &
Usher, 2015; E. M. Palmer, Horowitz, Tor-
ralba, & Wolfe, 2011; Wolfe, Palmer, &
Horowitz, 2010).

Eye Movement Methods

Once the visual display is present for an
extended period of time, recording eye
movements can be an instructive way to
examine the process of search (Kowler,
2011; Sanders & Donk, 1996; Tatler, 2009).
Eye tracking has been used as a method
in search experiments for decades (Enoch,
1959a; L. G. Williams, 1966), and advances
in technology have made it much more con-
venient in recent years. Modern eye trackers
can record the point of the eyes’ fixation
with good resolution in space and time. The
recorded scan path (Noton & Stark, 1971)
of fixations certainly tells us something
about the process of search. Attention and
fixation are linked (McPeek, Maljkovic, &
Nakayama, 1999). Programming a ballistic
movement of the eyes, a “saccade” to a
location has the effect of deploying atten-
tion to that location (Kowler, Anderson,
Dosher, & Blaser, 1995), and it is very hard
to program a deployment of the eyes to one
location and attention to another (Kowler
et al., 1995). Attention gets to the location of
a planned fixation in advance of the actual
fixation, and significant information can be
picked up from that location before fixation
(e.g., Melcher, 2007; B. Wolfe & Whitney,
2015), perhaps because some receptive fields
are remapped to that location by the act of
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directing attention and/or a planned saccade
to the location (Duhamel, Colby, & Goldberg,
1992). Pursuit eye movements, too, are linked
to attention (Khurana & Kowler, 1987).

If there were a 1:1 mapping between the
locus of selective attention and the point
of fixation, eye movement recording might
be the perfect way to study search, but,
sadly, that is not the case. First, it is possible
to perform search tasks without moving
the eyes (refer back to your experience of
Figure 13.4). Of more interest, if acuity and
crowding do not interfere with processing of
items away from fixation, it is possible to get
essentially the same pattern of RT × set size
data from observers who fixate and observers
who are free to move their eyes (Zelinsky &
Sheinberg, 1997). Second, for many classic
search tasks, eye movements do not reveal
which items have been selected by attention.
This is a simple matter of timing. Humans
make saccadic eye movements about 3–4
times per second. Even a classic inefficient
search like a search for a letter T among Ls
produces slopes consistent with a rate no
slower than 10–20 letters per second (e.g.,
if the estimate were based on the unusually
steep slope of about 50 ms/item in Huang,
2005). If the letters are made small enough
to require fixation, then slopes will be on
the order of 125 ms/item for target-present
trials and 250 ms/item for target-absent trials.
However, when acuity does not limit the
search, more than one item per fixation is
being processed. Regardless of whether one
thinks that several items are being processed
in parallel on each fixation (Hulleman &
Olivers, 2017) or that covert attention is
being deployed from one item to the next at a
rate faster than of voluntary saccades (Wolfe,
2003), fixations must be revealing only some
of the items that have been processed in a
standard search task.

This does not make eye tracking data
uninteresting in the least. There are search

tasks where the main question of interest is
how the target gets fixated. Arguably, this
is true of many medical image perception
studies (e.g., Bertram, Helle, Kaakinen, &
Svedstrom, 2013; Kundel & La Follette,
1972; Kundel, Nodine, & Carmody, 1978)
and some searches in continuous scenes (e.g.,
Ehinger, Hidalgo-Sotelo, Torralba, & Oliva,
2009; Henderson, Malcolm, & Schandl,
2009; Hwang, Wang, & Pomplun, 2011; Nei-
der & Zelinsky, 2006). More artificial search
tasks can be contrived where eye move-
ments reveal how the observer is foraging
for information (Najemnik & Geisler, 2005,
2008, 2009). There have also been efforts to
use more rapid eye movements (microsac-
cades) as a measure of rapid deployments of
attention (Engbert & Kliegl, 2003; Hafed &
Clark, 2002) (but see Horowitz, Fencsik,
Fine, Yurgenson, & Wolfe, 2007). Still, while
eye movements are an invaluable tool, they
cannot fully describe search.

Electrophysiological Measures

One of the disadvantages of RT measures
and even of eye movements is that the
behavior being measured lags hundreds of
milliseconds behind the events of interest,
the deployment of attention. Recording
electrical activity directly from the brain
is a possible solution to that problem. In
animals, it is possible to monitor atten-
tional effects in exquisite detail at the single
neuron level. This chapter is focused on
human behavioral data and will barely
touch the animal literature. The interested
reader can consult many good reviews
(Buschman & Kastner, 2015; Eimer, 2014;
Miller & Buschman, 2013; Nobre & Kast-
ner, 2014; Reynolds & Chelazzi, 2004).
In humans, visual event-related potentials
(ERPs), recorded from the scalp, are among
the most useful tools (Luck, 2014). Specific
waveforms have been associated with the
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deployment of attention, notably the N2pc
(Luck & Hillyard, 1994). ERP methods have
been used to examine a wide range of ques-
tions in search. For instance, there is ERP
evidence to support the notion of rapid serial
deployment of attention (Woodman & Luck,
2003). ERPs have examined the guidance
of attention by specific feature information
(Tollner, Zehetleitner, Gramann, & Muller,
2010) and by object categories (Nako, Wu,
Smith, & Eimer, 2014). The main drawback
is that the relevant signals are small and many
very similar trials must be averaged together
to produce a meaningful result. Moreover,
signals like the N2pc require that attention
goes reliably to the same item on the bulk of
these trials. This means that the methods are
hard to use on classic search tasks where the
observer is free to attend at random.

Functional magnetic resonance imaging
(fMRI) has provided a variety of useful
insights, mostly into the neural architecture
of visual search. For instance, fMRI pro-
vides evidence that the right temporoparietal
junction (TPJ) contributes to the search for
conjunctions (Pollmann, Zinke, Baumgart-
ner, Geringswald, & Hanke, 2014) and that
different networks are involved when target
features change (e.g., red to green) than
when target dimensions change (e.g., color
to orientation) (S. I. Becker, Grubert, & Dux,
2014). Other recent fMRI work suggests
that attentional networks may not be the
same in humans and other primates (Patel
et al., 2015). The fMRI is less useful in
uncovering the details of a specific search
because the method lacks the spatiotemporal
resolution to track attention from distractor
to distractor to eventual target. That said,
advances in fMRI like the work of Nishimoto
et al. (2011) raise the possibility of being
able to decode dynamic search from patterns
of blood-oxygen-level dependent (BOLD)
activity. Methods like magnetoencephalog-
raphy (MEG) hold promise to provide the

requisite resolution (Baldauf & Desimone,
2014), but we still await the imaging method
that can track attention in visual search the
way that an eye tracker registers fixations.

CLASSIC VISUAL SEARCH TASKS:
WHAT DO THE DATA TELL US?

The Continuum of Search Efficiency

As discussed previously, in the most standard
form of visual search experiments in the
lab, observers are asked to look for a target
in a display containing some number of
distractor items. The total number of items
in the display is the set size, and the function
relating RT to set size is a prime measure of
search efficiency, especially if error rates are
kept low.

Treisman’s original conception was that
search tasks could be divided into two classes:
parallel searches with slopes near zero, indi-
cating that all items could be processed in
parallel, and serial tasks with steeper slopes
(around 20–40 ms/item, indicating that items
were selected in series at a rate of 25–50
items/second) (Treisman & Gelade, 1980).
In fact, slopes of search tasks form a contin-
uum from very efficient to very inefficient
(Wolfe, 1998). This is cartooned in a series
of examples in Figure 13.6.

For illustrative purposes, we have divided
the search continuum into four rough cat-
egories. Note that it is a bad idea to try
to strictly define terms like efficient using
precise slope values. It would not be reason-
able, for example, to assert that 8 ms/item
is officially efficient whereas 10 ms/item is
officially inefficient. There is no categorical
boundary between such labels; search effi-
ciency is a continuous measure. Moreover,
slopes tend to be quite variable, and it would
not be helpful to declare that one observer
was categorically different from another
observer, based on a small slope difference.
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Efficient Less Efficient Inefficient Very Inefficient

FIND FIND FIND FIND

FIND FIND FIND FIND

Figure 13.6 Two examples each of four rather loosely defined categories of search.

Slopes are best used comparatively to make
statements such as “Looking at Figure 13.6, it
is clear that the search for light green among
darker orange diamonds is more efficient
than search for the same light green diamond
among darker blue diamonds and light green
circles.”

Continuing with Figure 13.6 and starting
with the most efficient searches, the shal-
lowest RT × set size functions are found
for searches where the target is defined by
a salient difference from the distractors in a
basic feature (features are discussed in more
detail later) (Egeth, Jonides, & Wall, 1972).
Here, the targets’ salient differences in shape
and color immediately attract attention. Hav-
ing a target that differs in a basic feature from
the distractors does not necessarily guarantee
an efficient search. If the target-distractor
(TD) difference is smaller, search will be
less efficient (Duncan & Humphreys, 1989;
Foster & Ward, 1991b; Nagy & Sanchez,
1990). Thus, in the second column, the shape
difference in the second row is not partic-
ularly subtle, but the slope for this search
would probably be somewhat steeper than
the shape search in column 1.

Of more theoretical import is the conjunc-
tion search, illustrated at the top of column 2.
In a standard conjunction search, the target

is defined by the presence of two features
among distractors that each share one feature
with the target. Here, a light green diamond
shares color with light green circles and
shape with dark blue diamonds. Treisman and
Gelade (1980) originally reported that con-
junction searches were inefficient—“serial”
in their terms, with slopes greater than
20 ms/item on target-present trials. However,
starting in the later 1980s, exceptions started
to appear (McLeod, Driver, & Crisp, 1988;
Nakayama & Silverman, 1986; Quinlan &
Humphreys, 1987; Wolfe, Cave, & Franzel,
1989). Today, it is clear that conjunction
searches tend to be less efficient than the
easiest feature searches, but that there is no
clear slope value that divides performance
on the two different types of search task.
Indeed, some conjunction tasks can produce
slopes as shallow as most feature searches
(Theeuwes & Kooi, 1994). Typically, a
search for a conjunction target defined by
two salient features will produce a slope
of about 10–15 ms, always assuming that
acuity is not a factor and the items can be
recognized in near-peripheral vision (Wolfe,
1998). As will be discussed later, the effi-
ciency of conjunction searches depends on
the effectiveness with which feature informa-
tion can guide attention to the target. In the
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Figure 13.6 example, attention can be guided
to light green items, eliminating the darker
blue diamonds from consideration. Attention
is probably guided somewhat more weakly
to diamonds over the circle distractors.

In the third column we have inefficient
searches. This is the category of what Treis-
man and Gelade called “serial” searches with
target-present slopes in the neighborhood of
20–40 ms/item. Classic inefficient searches
are often tasks where the targets and dis-
tractors have the same features in different
spatial arrangements. Here the example is
a search for an L (in any of four rotations)
among Ts (likewise rotated). These “spatial
configuration” searches tend to be ineffi-
cient. When they are not, it is often because
some unexpected feature is complicating the
results. For instance, search for an upright
L among upright Ts can be quite efficient,
probably because the convex hull of each
character defines a triangle, and the target
and distractor triangles are of different orien-
tations. Feature searches can be inefficient,
too. Here the example is search for a ver-
tically oriented oval among ovals tilted 20
degrees to the left and right of vertical. Even
though it is easy to identify a vertical item
once it is attended, the search for a specific
orientation is inefficient if the distractors
flank it in orientation (Wolfe, Friedman-Hill,
Stewart, & O’Connell, 1992). As with the
previous examples, these inefficient searches
would involve relatively large stimuli that
can be identified without fixation.

In the study of classic visual search, it is
sometimes forgotten that the search contin-
uum does not end with what we are calling
inefficient search. There are many instances
of simple search tasks that will produce
markedly steeper RT × set size functions.
Here, we are calling all of these “very inef-
ficient.” Perhaps the most trivial examples
are those where the search task requires
foveation to identify the target. For example,

if the Ts and Ls of the inefficient example
were rendered in a small font, the RT × set
size slope would be constrained by the rate of
eye movements. A task that produces slopes
of around 125 ms/item on target-present
trials and 250 ms/items on target-absent
trials is probably a serial, self-terminating
search for an item that needs to be fixated.
Slopes can be arbitrarily steep even with
large, well-defined items if those items each
take an arbitrarily long time to identify.
Thus, in column 4, the top example would
be very inefficient for non-Chinese readers
who would take hundreds of milliseconds to
identify each item and/or to try to match it to
the designated target. Chinese readers would
be faster, illustrating the obvious fact that
expertise makes a difference in search. The
second very inefficient example simply asks
observers to look for a specific arrangement
of the colored rings. This can be painfully
slow. If you imagine adding rings, you can
see how these very inefficient searches can
be almost arbitrarily slow.

As an aside, in the third column, second
example, if you did not notice that there are
two vertical targets, you have fallen victim
what is known as “satisfaction of search”
(Berbaum et al., 1990; Berbaum et al., 2015;
Cain & Mitroff, 2012; Fleck, Samei, &
Mitroff, 2010; Nodine, Krupinski, Kundel,
Toto, & Herman, 1992; Tuddenham, 1962), a
phenomenon with potentially serious conse-
quences if you are meant to find the second
tumor or the unexpected broken rib. Factors
from memory capacity to personality traits
can influence susceptibility to these errors
(Cain, Dunsmoor, LaBar, & Mitroff, 2011;
Cain & Mitroff, 2012).

What Are the Guiding Attributes?

The continuum of search efficiency, shown in
Figure 13.6, is governed by two factors: the
ability to guide attention toward likely targets
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Figure 13.7 In search for a dark green L, atten-
tion will be guided to dark green.

and the speed with which distractors can
be rejected. As discussed earlier, the fourth
column of Figure 13.6 illustrates the distrac-
tor rejection factor. Here we will consider
the attributes that guide attention toward a
target. The basic idea of guidance is shown
in Figure 13.7. If you search for a dark green
L, you will need to perform an inefficient
search for an L among Ts, but you will be
able to restrict your search to the dark green
items. If half the items are dark green, then
the slope of the RT × set size function will be
cut approximately in half, compared to the
situation where all items are the same color
(Egeth, Virzi, & Garbart, 1984). If only 25%
of items were dark green, the slope would
be cut to one fourth of its unguided value.
In these terms, highly efficient searches like
those shown in column 1 of Figure 13.6 can
be thought of as searches in which attention
is guided to the target item immediately, thus
making the rest of the set size irrelevant.

Wolfe et al. (1989) introduced the use
of the term guidance in this sense in the
context of the guided search (GS) model,
a modification of Treisman and Gelade’s
feature integration theory (FIT). FIT orig-
inally proposed that a limited set of basic
features could be searched for in parallel
and that all other searches, other than basic

feature search, required serial, self-terminating
search (Sternberg, 1966). Wolfe et al. (1989)
modified the basic FIT idea, arguing that
basic features could be processed in parallel
and then used to guide the serial deployment
of attention. It is worth noting that accepting
the idea of feature guidance does not require
acceptance of this FIT–GS commitment
to serial deployments of covert attention.
Returning to Figure 13.7, it would be possi-
ble that the role of guidance is to limit the
parallel processing of items to just the dark
green items, freeing up more resources for
those items or otherwise allowing more rapid
parallel processing of the relevant items. In
neurophysiological work, for instance, it has
been proposed that feature guidance (often
called feature attention in that literature)
“might allow the processing of all objects
in parallel but bias activity in favor of those
neurons that represent critical features of the
target” (from the abstract of Bichot, Rossi, &
Desimone, 2005).

Many years of work have failed to create
a definitive list of the attributes that guide
attention. That said, we do know a lot about
guiding features. First, compared to the set
of all possible attributes, the set of guid-
ing attributes is very limited; between one
and two dozen would be a plausible range.
As will be described later, many important
attributes, although readily processed by the
visual system, do not guide search. If you
think of guidance as a human search engine,
the set of terms you can type into the search
box is vastly smaller than the terms you can
type into Google. Second, all attributes are
not equal. It is not clear why one attribute
should be more effective than another, but it
is clear that color and motion guide attention
more effectively than, say, orientation, and
that orientation is more effective than various
depth cues.

Tables 13.1 through 13.5 show the latest
version of a list of attributes that appear to
guide attention. This list is a modification
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Table 13.1 The Undoubted Guiding Attributes: Almost Everyone Would Agree That These Features Guide
Attention. Generally, There Is Converging Evidence from Multiple Paradigms

The Undoubted Guiding
Attributes

Color (Bauer, Jolicoeur, & Cowan, 1996, 1998; Brawn & Snowden, 1999; Carter, 1982;
Daoutis, Pilling, & Davies, 2006; Duncan, 1988; D’Zmura, 1991; Farmer &
Taylor, 1980; Green & Anderson, 1956; Lindsey et al., 2010; Monnier & Nagy,
2001; Nagy & Sanchez, 1990; Nagy, Young, & Neriani, 2004; Smith, 1962;
Treisman & Gormican, 1988; Treisman & Souther, 1985)

1

Motion (Braddick & Holliday, 1991; Burr, Baldassi, Morrone, & Verghese, 2009; Dick,
Ullman, & Sagi, 1987; Horowitz, Wolfe, DiMase, & Klieger, 2007; Kawahara,
1993; McLeod et al., 1988; Nakayama & Silverman, 1986; Nothdurft, 1993a;
Rosenholtz, 2001; Takeuchi, 1997; von Muhlenen & Muller, 1999)

2

Orientation (Bergen & Julesz, 1983a; Cavanagh, Arguin, & Treisman, 1990; Foster & Ward,
1991a; Moraglia, 1989a; Sagi, 1990; Wolfe & Friedman-Hill, 1992b; Wolfe,
Friedman-Hill, et al., 1992; Wolfe, Klempen, & Shulman, 1999)

3

Size (including length and
spatial frequency)

(Cavanagh et al., 1990; Found & Muller, 2001; Moraglia, 1989b; Sagi, 1988;
Stuart, 1993; Treisman & Gormican, 1988; Verghese & Nakayama, 1994;
Verghese & Pelli, 1994; Williams, 1966)

4

Notes:
1Color is usually the first dimension that comes to mind, though it is not always the most powerful (Huang, 2015a).
More recent work has focused on the nature of preattentive color processing. Thus, unique hues do not seem to have
special status (Wool et al., 2015), though cardinal directions in color space might make some difference (Gunther,
2014).
2It is always a little difficult to know if a property like motion contains several preattentive dimensions (e.g., speed and
direction), with possibly further divisions of direction in the third dimension (looming) (Franconeri, Hollingworth, &
Simons, 2005; Skarratt, Cole, & Gellatly, 2009). Further complications arise if we consider rotational motions like
rolling and spinning (Cain, Josephs, & Wolfe, 2015).
3Most of what we know about orientation search is derived from work about single lines or objects in isolation. We
should remember that factors like collinearity have a strong effect on orientation search (Meigen, Lagreze, & Bach,
1994; Tseng & Jingling, 2015).
4As with motion, it is unclear if the attribute of size is a single thing or a collection of preattentive dimensions like
spatial frequency (Bilsky & Wolfe, 1995). It is also possible that there are specific effects of the known real-world
size of objects even if the mouse and the elephant subtend the same visual angle onscreen (Long, Konkle, Cohen, &
Alvarez, 2016), though these effects may not be preattentive. Size search is also influenced by the apparent 3D layout
of the display (Champion & Warren, 2010).

of the list found in the Oxford Handbook of
Attention (Wolfe, 2014), and that list was an
adaptation of an earlier version (Wolfe &
Horowitz, 2004). Extensive references and
notes are given for readers with a special
interest in the topic. The more casual reader
would be forgiven for scanning the list and
moving on.

On top of the fundamentally serial pro-
cess, search for faces or facial emotion can
be modulated by many factors, including the
political stance of the searcher (Mills, Smith,
Hibbing, & Dodd, 2014) or the searcher’s

race (Sun, Song, Bentin, Yang, & Zhao,
2013). Whereas some would argue for an
ability of facial emotion to guide search
(Dickins & Lipp, 2013), others argue that
this, too, reflects the operation of more basic
features (Savage, Lipp, Craig, Becker, &
Horstmann, 2013). The more common find-
ing is that emotion modulates relatively
inefficient search tasks (Skinner & Benton,
2012; Shirama, 2012; Sato & Yoshikawa,
2010). This can probably be attributed to
differences in the time that observers are
engaged with attended distractors. If an
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Table 13.2 Probable and Possible Guiding Attributes. These Items can Make a Reasonable Case for Their
Status As Guiding Attributes. However, More Data Would Be Needed to Address Dissenting Opinions or the
Possibility of Alternative Explanations

Probable and Possible
Guiding Attributes

Luminance onset (flicker) (Spalek, Kawahara, & Di Lollo, 2009; Theeuwes, 1995; Yantis & Jonides, 1990) 5
Luminance polarity (Gilchrist, Humphreys, & Riddoch, 1996; Theeuwes & Kooi, 1994)
Vernier offset (Fahle, 1991a, 1991b) 6
Stereoscopic depth

and tilt
(He & Nakayama, 1992; Holliday & Braddick, 1991; McSorley & Findlay, 2001;

Moore, Elsinger, & Lleras, 2000; Nakayama & Silverman, 1986; O’Toole &
Walker, 1997; Sousa, Brenner, & Smeets, 2009)

7

Pictorial depth cues (Aks & Enns, 1993; Enns & Rensink, 1990, 1993; Enns, Rensink, & Douglas,
1990; Epstein, Babler, & Bownds, 1992; Johannesson, Sigurdardottir, &
Kristjansson, 2013; Sun & Perona, 1996a; Von Grünau & Dubé, 1994)

7

Shape (Bergen & Julesz, 1983b; Cheal & Lyon, 1992; Chen, 1982, 1990; Huang, 2015b;
Kristjansson & Tse, 2001; Orsten-Hooge, Portillo, & Pomerantz, 2015; Pilon &
Friedman, 1998; Pomerantz & Pristach, 1989; Treisman & Gormican, 1988;
Tsal, Meiran, & Lamy, 1995; Wolfe & Bennett, 1997)

8

Line termination (Donnelly, Humphreys, & Riddoch, 1991; Julesz & Bergen, 1983; Taylor &
Badcock, 1988)

8

Closure (Chen, 1982; Elder & Zucker, 1994, 1998; Enns, 1986; Kanbe, 2009; Kovacs &
Julesz, 1993; Treisman & Souther, 1985; Williams & Julesz, 1992)

8

Topological status (Chen, 1982, 1990, 2005; Rubin & Kanwisher, 1985) 8
Curvature (Fahle, 1991b; Foster & Savage, 2002; Gurnsey, Humphrey, & Kapitan, 1992;

Sakai, Morishita, & Matsumoto, 2007; Treisman & Gormican, 1988; Wolfe,
Yee, & Friedman-Hill, 1992)

8

Lighting direction
(shading)

(Adams, 2008; Aks & Enns, 1992; Braun, 1993; Kleffner & Ramachandran, 1992;
Ostrovsky, Cavanagh, & Sinha, 2005; Ramachandran, 1988; Sun & Perona,
1996a, 1996b; Symons, Cuddy, & Humphrey, 2000; Zhang, Huang,
Yigit-Elliott, & Rosenholtz, 2015)

9

Glossiness (luster) (Wolfe & Franzel, 1988) 10

Notes:
5At first, it seemed that onsets were the ultimate attention-capturing feature (Yantis, 1993), but the picture subsequently
became more complicated (Kunar & Watson, 2014). Still, in an otherwise static display, an abrupt onset is very like
to pop out.
6Vernier as a guiding property suffers from a lack of follow-up research since Fahle’s work. Moreover, it might be a
version of an orientation cue (Findlay, 1973).
7A sufficiently salient bump on a smooth background will attract attention (Kleffner & Ramachandran, 1992), but
there are lots of depth cues that will indicate the presence of that bump, and it is not clear if they should be treated
as separate guiding attributes or as different ways to produce a change in the 3D structure of the scene. Here, again,
there is room for a host of experiments. Moreover, not every bump will pop out (Johannesson et al., 2013).
8It is clear that something about the shape of objects guides attention, and it is decidedly unclear what that something
is. Probably there are multiple aspects of shape that have the status of guiding attributes. For instance, line termination,
closure, curvature, and some topological properties all support efficient search. The issue is complicated by our failure
to settle on a set of shape features (Kourtzi & Connor, 2011; Yamane, Carlson, Bowman, Wang, & Connor, 2008). The
advent of deep convolutional neural networks (Krizhevsky, Sutskever, & Hinton, 2012; Szegedy, Toshev, & Erhan,
2013) that can perform impressive feats of object recognition and detection may provide new insights into human
shape processing, but, at this writing, that is in the future.
9Some early work suggested a guiding role for shading and lighting direction (e.g., Ramachandran, 1988). This was
undercut by some later work (Cavanagh, 1999; Ostrovsky et al., 2005). The most recent work on the pop-out of cubes
lit from different directions may support the idea that shading information should be grouped with other cues like
stereopsis into one omnibus 3D depth property (Zhang et al., 2015).
10The evidence for shininess or gloss comes from one paper on binocular luster (Wolfe & Franzel, 1988). There have
been subsequent conference talks supporting (Formankiewicz & Mollon, 2006) and questioning (Birnkrant, Wolfe,
Kunar, & Sng, 2004) that finding. We have recently replicated the 1988 finding, but we find that luster is not a strong
guiding feature (Zou, Utochkin, & Wolfe, 2016).
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Table 13.2 (Continued)

Probable and Possible
Guiding Attributes

Expansion/looming (Braddick & Holliday, 1991; Franconeri & Simons, 2003; Skarratt et al., 2009;
Takeuchi, 1997)

11

Number (Reijnen, Wolfe, & Krummenacher, 2013; Taylor & Badcock, 1988; Treisman &
Gormican, 1988)

12

Aspect ratio (Treisman & Gormican, 1988)

Notes:
11“Expansion” and/or “looming” cues are somewhat problematic because they might be decomposed into a depth cue,
a size cue, a motion cue, or some combination of these. There is some evidence that looming has a special role as a
stimulus that requires a response: the behavioral urgency hypothesis (Franconeri & Simons, 2003; Lin, Franconeri, &
Enns, 2008).
12Recent evidence shows that numerosity (Does this cluster contain more dots than the other clusters?) is, at best, a
rather weak feature, requiring large (>3:1) ratios between target and distractor numerosities.

angry face, for example, holds attention
longer, search for a happy face will be
less efficient than search for an angry face
because searchers are taking more time to get
through each of the angry distractors than the
happy distractors.

Mechanics of Feature Guidance

The ability of an attribute to support an effi-
cient visual search is governed by an exten-
sive set of rules. Some of these are quite basic.
For instance, the more similar the target is
to the distractors, the less efficient the search
will be (TD similarity) and the more hetero-
geneous the distractors are, the less efficient
a search will be (DD heterogeneity). While
these are good general principles, the details
need to be worked out for each attribute.
For example, TD similarity functions have
been worked out for at least some of the color
space by Nagy et al. (Nagy & Sanchez, 1990;
Nagy, Sanchez, & Hughes, 1990).

TD and DD relationships are not indepen-
dent. In color, for example, search for one
color among two others will be quite efficient
if a line can be drawn in color space that puts
the target on one side of the line and the dis-
tractors on the other side. Search will be quite
inefficient if the target lies on a line in color

space at a point between the two distractors.
This is known as the principle of linear sep-
arability (Bauer et al., 1996, 1998; D’Zmura,
1991). The principle works for other features
as well. Thus, it is easy to find a vertical line
among lines tilted 20 and 60 degrees to the
left of vertical, but it would be hard to find
the target if the distractors were 20 degrees to
the left and 20 degrees to the right of vertical.
The average DD heterogeneity is the same,
but in the first case a line can be drawn in ori-
entation space putting the target on one side
and the distractors on the other. In the second
case, targets and distractors are not linearly
separable, and search will be inefficient
(Wolfe, Friedman-Hill, et al., 1992).

Utochkin and Yurevich (2016) describe
another important interaction of TD and DD
similarity. Search for a 45 degree tilted target
among 0 and −45 degree tilted distractors
will be quite efficient. It will be more efficient
if the distractors are distributed between 0 and
−45 (0, −9, −18, −27, −36, −45). Utochkin
and Yurevich describe this more continuous
set of distractors as “segmentable.” Another
way to think about it focuses on the local
DD and TD differences. It is the difference
between an item and its near neighbors that
makes it salient and allows it to attract atten-
tion. When there are only 0 and −45 degree
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Table 13.3 Doubtful Cases and Probable Non-Guiding Attributes. Probably Not: Candidates for Guiding
Attribute Status Where the Data Is Weak or Negative. In Some of These Cases, More Data Might Change the
Conclusion

Doubtful Cases and Probable
Non-Guiding Attributes

Novelty (Flowers & Lohr, 1985; Frith, 1974; Johnston, Hawley, & Farnham, 1993;
Q. Wang, Cavanagh, & Green, 1994; Wolfe, 2001; Zhaoping & Frith, 2011)

13

Learned features
(e.g., letters)

(Atkinson, Holmgren, & Juola, 1969; Golcu & Gilbert, 2009; Grice & Canham,
1990; Kinchla, 1974; Kinchla & Collyer, 1974; Shiffrin & Gardner, 1972)

14

Alphanumeric category (Brand, 1971; Duncan, 1983; Jonides & Gleitman, 1972; Krueger, 1984) 15
Intersection (Bergen & Adelson, 1988; Bergen & Julesz, 1983a, 1983b; Julesz, 1981, 1984;

Julesz & Bergen, 1983; Julesz & Krose, 1988; Nothdurft, 1991; Wolfe &
DiMase, 2003)

16

Optic flow (Braddick & Holliday, 1991; Bravo, 1998; Royden, Wolfe, & Klempen, 2001)
(but see Rushton, Bradshaw, & Warren, 2007)

17

Color change (Theeuwes, 1995)
3D volumes (e.g., geons) (Brown, Weisstein, & May, 1992; Pilon & Friedman, 1998)
Luminosity (i.e., light

sources)
(Correani, Scot-Samuel, & Leonards, 2006; Vincent, Baddeley, Correani,

Troscianko, & Leonards, 2009)
18

Material type (Wolfe & Myers, 2010)
Scene category (Greene & Wolfe, 2011)
Duration (Morgan, Giora, & Solomon, 2008)
Stare-in-crowd (Doi & Ueda, 2007; Palanica & Itier, 2011; von Grunau & Anston, 1995;

Williams, Moss, & Bradshaw, 2002)

Notes:
13Accepting novelty as a guiding feature requires evidence that there is not some other, more basic feature guiding
attention. Thus, for example, it is easier to find a novel, mirror-reversed, letter N among normal Ns than it is to find an
N among mirror-reversed Ns. This is curious because the orientation of the central diagonal should be adequate to do
the task. It is interesting that this advantage for mirror-N targets is not found for bilingual Russian–German readers for
whom neither Ns nor mirror-Ns are novel (Malinowski & Hübner, 2001). Wolfe (2001) found that mirror-Ns produced
stronger effects than mirror-reversed versions of the letters P, K, f, or y, even though all those letters also produced
asymmetries favoring the unfamiliar target. A version that controls well for low-level visual features is the report by
Q. Wang et al. (1994), showing that search for mirror-N or mirror-Z among normal Ns or Zs is very efficient. The
reverse is not efficient. It would be worth replicating that result. In the same vein, it would be worth understanding
why Wolfe (2001) found that an inverted elephant was easy to find among upright elephants but an inverted swan was
not so easy to find (an odd finding).
14If a mirror-N is easy to find among Ns, this must be the product of learning. We were not born with a bias toward
one of those two stimuli. Any asymmetry must be learned. But what is learned when an item becomes very familiar?
Do new, preattentive features emerge, or are observers simply learning to use features like line termination or closure
more effectively? Is it possible to learn a new preattentive feature? This is a long-standing question in visual search.
Work with overlearned alphanumeric characters certainly shows that this learning can influence search (Caerwinski,
Lightfoot, & Shiffrin, 1992; Malinowski & Hübner, 2001; Sigman & Gilbert, 2000; Sireteanu & Rettenbach, 1995),
but it remains unclear whether this overlearning results in the creation of new features.
15It was once thought that a letter might “pop out” among numbers and vice versa, but these effects (e.g., the “zero-oh”
effect; Jonides & Gleitman, 1972) have been hard to replicate (Krueger, 1984).
16Intersection once seemed to be a good candidate for guiding attribute status, but subsequent experiments show that
it is unlikely to be such an attribute (Wolfe & DiMase, 2003).
17Optic flow might be a reasonable candidate for a guiding attribute status, but the data indicate that flow itself is not
a feature. Instead, attention is guided by the motion of objects in the world. This involves an ability to disregard the
optic flow motions due to observer motion (Rushton et al., 2007).
18Correani et al. (2006) found that luminosity did appear to support efficient search, but this was attributable to local
luminance effects and not to luminosity itself. Using eye tracking while observers viewed scenes containing light
sources like streetlights, Vincent et al. (2009) found that these self-luminous stimuli did not preferentially attract
attention.
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Table 13.3 (Continued)

Doubtful Cases and Probable
Non-Guiding Attributes

Eye of origin/ binocular
rivalry

(Paffen, Hooge, Benjamins, & Hogendoorn, 2011; Shneor & Hochstein, 2006;
Wolfe & Franzel, 1988; Zhaoping, 2008)

19

Your name (Bundesen, Kyllingsbaek, Houmann, & Jensen, 1997)
Threat (Batty, Cave, & Pauli, 2005; Lipp, 2006; Notebaert, Crombez, Van Damme,

De Houwer, & Theeuwes, 2011; Öhman, Flykt, & Esteves, 2001; Soares,
Esteves, Lundqvist, & Ohman, 2009; Tipples, Young, Quinlan, Broks, & Ellis,
2002)

20

Biological motion (Pratt, Radulescu, Guo, & Abrams, 2010; L. Wang, Zhang, He, & Jiang, 2010) 21

Notes:
19Wolfe and Franzel (1988) had argued that binocular rivalry did not guide attention, but some newer results suggest
otherwise (Paffen et al., 2011; Paffen, Hessels, & Van der Stigchel, 2012). The same could be said about “utrocular,”
eye-of-origin information. Our recent results suggest that rivalry might guide search if noise from other dimensions
(like orientation) is eliminated (Zou et al., 2016).
20Clearly, threatening stimuli elicit threat-specific responses (e.g., the responses of phobics to snakes or spiders;
LoBue & DeLoache, 2008; Rakison & Derringer, 2008; Reinecke, Rinck, & Becker, 2006). However, threat does
not appear to guide search if other basic features are controlled for. Thus, a snake may hold attention once it is found,
but if attention is guided to a snake, it is because attention can be guided by attributes like line termination.
21Biological motion is one of those stimuli that seems like it should be found efficiently because of its obvious impor-
tance (Blake, 1993; Blake & Shiffrar, 2007; Johansson, 1973). However, such stimuli do not seem to support efficient
visual search. The related property of animacy may have feature status (Gao, McCarthy, & Scholl, 2010; Gao, New-
man, & Scholl, 2009; Gao & Scholl, 2011).

Table 13.4 Complicated Cases

Complicated

Faces (presence of,
familiarity of, upright,
angry, real, schematic,
etc.)

(D. V. Becker, Anderson, Mortensen, Neufield, & Neel, 2011; S. I. Becker,
Horstmann, & Remington, 2011; Devue, Van der Stigchel, Brèdart, &
Theeuwes, 2009; Doi & Ueda, 2007; Eastwood, Smilek, & Merikle, 2001;
Frischen, Eastwood, & Smilek, 2008; Hansen & Hansen, 1988; Hershler,
Golan, Bentin, & Hochstein, 2010; Hershler & Hochstein, 2005, 2006;
Horstmann, Bergmann, Burghaus, & Becker, 2010; Langton, Law, Burton, &
Schweinberger, 2008; Nothdurft, 1993b; Purcell, Stewart, & Skov, 1996;
Suzuki & Cavanagh, 1995; Tong & Nakayama, 1999; Vanrullen, 2006; von
Grunau & Anston, 1995)

22

Other semantic categories
(e.g., “animal”)

(Levin, Takarae, Miner, & Keil, 2001)

Notes:
22Perhaps no candidate attribute has been the subject of more research and controversy than the face. Obviously, faces
are very important. We even have brain areas that seem especially devoted to them (Grill-Spector, Knouf, & Kanwisher,
2004; Kanwisher & Wojciulik, 2000). Moreover, it sometimes feels like a familiar face pops out of a crowd or that
facelike configurations of stimuli grab attention. However, as with other complex stimuli, debate has raged about
whether efficient search for faces, when found, can be explained by other, simpler features (see, e.g., Hershler &
Hochstein, 2005, 2006; Vanrullen, 2006). One piece of evidence for guidance by faces seems to inspire a subsequent
study that shows that another visual feature is at work. Others will conclude differently, but our conclusion is that
faces are processed one at a time.
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Table 13.5 Modulators

Modulators

Cast shadows (Rensink & Cavanagh, 2004) 23
Amodal completion (Rensink & Enns, 1998; Wolfe et al., 2011)
Apparent depth (Aks & Enns, 1996; Champion & Warren, 2008; Wheatley, Cook, & Vidyasagar,

2004)

Notes:
23Some stimulus properties seem to modulate search even if they are not guiding attributes in the classic sense. It seems
as if these properties are computed before attention selects the object, and the results of that computation can have an
influence on other basic features. For example, apparent depth changes apparent size, and the apparent size of an item,
rather than its extent on the retina, is what is critical in search. Similarly, amodal completion of an item behind an
occluder can make a small line segment in the image appear to be part of a long line that continues under the occluder.
Rensink and Enns (1998) show that, in a search task, this line will behave like the long line and not like the physically
present small segment.

distractors, there are a lot of salient Δ45
degree DD differences. With the larger set
of distractors, though the average distractor
orientation remains −22.5, there are fewer
large DD differences to distract attention
from the TD differences.

Orientation search has been more exten-
sively studied than, perhaps, any other
guiding attribute. We can use these findings
to illustrate a set of rules that probably apply
to other attributes, as well. Guidance is based
on a coarse representation of an attribute. In
orientation, observers can easily discriminate
between lines whose orientations are only a
few degrees apart if they are attending to the
stimuli. However, efficient search requires
a much greater TD separation of 10–15
degrees (Foster & Ward, 1991a). Moreover,
this coarseness is not just a scale factor.
Efficient search does not simply appear
when the TD distance is some multiple of
the just noticeable difference (JND) for that
attribute. Thus, for color, the JNDs around a
specific color form an ellipse in a 2D color
plane (MacAdam, 1942). When Nagy and
Sanchez (1990) produced a similar contour
for efficient color search, they found that
the critical TD differences did not form a
bigger ellipse of the same shape. Instead, they
found a different, more quadrilateral shape.

In orientation, the coarse processing appears
to have a categorical nature. It is easier to
find a target if it is the only steep or shallow
item in the display (Hodsoll & Humphreys,
2005; Wolfe, Friedman-Hill, et al., 1992). It
is easier to find a target if the distractors are
symmetrical about a vertical axis and harder
if the target is symmetrical with distractors
(Wolfe & Friedman-Hill, 1992a). It is easier
to find a target if it forms a unique implicit
angle with distractors than if it does not
(Wolfe & Friedman-Hill, 1992b). It is likely
that similarly specific rules apply to other
attributes as well, but the research has not
been done. It is important to remember that
the properties that guide attention are not the
same as the properties that we see, a point
made in an interesting taxonomy of features
by Huang (2015b).

A recurring theme in our understanding
of the ability of features to guide attention is
that the TD and DD relationships are criti-
cal. What angle is formed by two distractor
orientations? What is the just noticeable
difference between two colors, and so forth?
A series of studies by Stephanie Becker and
her colleagues has made this point especially
clear (Becker, 2010, 2013; Becker, Harris,
Venini, & Retell, 2014). For example, one
search trial can speed a subsequent search
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trial if they are similar searches. Thus, if
you search for red among green on one trial,
you will be faster to respond to a second
red among green trial than to a green among
red trial, even though both trials are triv-
ially easy (Maljkovic & Nakayama, 1994).
Becker showed that if you find an orange
target among yellow on one trial, you are
faster to find red among orange than orange
among red on the next trial. This appears to
happen because orange among yellow was
the search for the target that was relatively
more red. In the second search, you are faster
to find another target when it is the relatively
more red even though the absolute colors
have shifted.

Bottom-Up and Top-Down Guidance

A feature can guide attention in one of two
ways. As discussed earlier, if an item differs
from its neighbors by more than a preattentive
just noticeable difference, it will attract atten-
tion in a bottom-up, stimulus-driven manner.
The intentions of the observer are not critical.
The extent to which such bottom-up guidance
is mandatory is the root question behind the
extensive literature on attention capture (e.g.,
Carmel & Lamy, 2015; Franconeri et al.,
2005; Harris, Becker, & Remington, 2015;
Hillstrom & Yantis, 1994; Pratt, Radulescu,
Guo, & Abrams, 2010; Rauschenberger,
2003). Work on stimulus salience and on
“salience maps” in the brain is (for the
most part) work describing this bottom-up
component (Koch & Ullman, 1985; Z. Li,
2002; Parkhurst, Law, & Niebur, 2002;
Thompson & Bichot, 2004). Under the right
circumstances, observers can usually manage
to ignore or largely ignore bottom-up signals
if they are pulling attention in the wrong
direction (Yantis & Egeth, 1999). However,
if the bottom-up signal is strong enough,
it will attract attention even if those effects
may be hidden under some circumstances
(Gaspelin, Ruthruff, & Lien, 2016). Or, in
the words of the 19th-century author Sully,

Figure 13.8 Even if the vertical line “pops out,”
it is not hard to search for green (in the full-color,
on-line version).

“One would like to know the fortunate (or
unfortunate) man who could receive a box
on the ear and not attend to it” (Sully, 1892,
p. 146).

Bottom-up signals can be largely ignored
if the observer is guiding attention in a
top-down fashion. Thus, in Figure 13.8, on
first glance the vertical line would attract
attention in a bottom-up manner. However, if
you were told to find green stimuli, you would
have no problem doing that (in the on-line
version). If you were doing a series of such
searches, you would be minimally inconve-
nienced by the vertical line (Snowden, 1998;
Yantis & Egeth, 1999) (but see Becker, 2007).
Top-down guidance is guidance of attention
by the user’s goals. Attentional deployments
in the real world will be a combination of
top-down and bottom-up factors. What is
here called top-down guidance seems to
be what is discussed as “feature attention”
in the physiology literature (e.g., Bichot,
Heard, DeGennaro, & Desimone, 2015;
Martinez-Trujillo, 2011; Schoenfeld et al.,
2007). The basic physiological observation
is that training a monkey to search for red,
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for example, gives a boost in activity to all
red items in the field. This is as distinguished
from spatial attention, where the monkey
would be trained to direct attention to a spe-
cific location. Spatial attention tasks change
the size and position of receptive fields (e.g.,
J. Moran & Desimone, 1985; Womelsdorf,
Anton-Erxleben, Pieper, & Treue, 2006).

The distinction between top-down and
bottom-up processing is not as clear is it
might seem at first glance. Consider the
effects of priming and of value. In priming
studies, it is found that the appearance of
a target on previous trials (or as a preview
to the current trial) makes observers faster
and/or more likely to find the same target
again (Hillstrom, 2000; Huang, Holcombe, &
Pashler, 2004; Maljkovic & Nakayama, 1994;
Wolfe, Butcher, Lee, & Hyle, 2003). Some
hold that large swaths of the search liter-
ature can be explained by such bottom-up
priming (Theeuwes, 2013). Alternatively,
priming could be described as top-down
since attention is being guided by the user,
albeit in an implicit, automatic manner
(Wolfe, Horowitz, Kenner, Hyle, & Vasan,
2004). The lack of volition should not be
seen as critical. When you look for an apple,
you do not (usually) explicitly ask yourself
to find “red” and “round.” That top-down
guidance is also essentially implicit. There is
no answer to the question of whether priming
is top-down or bottom-up. It is a matter of
the precise definitions one cares to apply to
those terms.

The same can be said about the effect
of value. Attention is attracted to more
valuable items in a manner resembling atten-
tional capture by salient items (Anderson,
Laurent, & Yantis, 2011; Anderson & Yantis,
2013; Kristjansson, Sigurjonsdottir, & Driver,
2010). Items are made more valuable by asso-
ciating them or their features with rewards.
The effects of this training are often consid-
ered to modify bottom-up, stimulus-driven

attention (Munneke, Hoppenbrouwers, &
Theeuwes, 2015), but, as with priming,
one could consider value to be a type
of top-down set—again, outside of clear
conscious control.

Guided Search to Conjunctions
of Features

Regardless of the precise definitions of
top-down and bottom-up guidance, it is clear
that attention can be guided by features of the
target. When an observer looks for a specific
type of target, the effectiveness of this feature
guidance is an important component in deter-
mining the efficiency of the search. Returning
to Figure 13.7, if you are told to search for the
dark green L, your attention will be guided
to the dark green items, making the search
more efficient. Your attention will not be
preferentially directed to Ls over Ts, because
no guiding attribute distinguishes L from T.
You will attend to dark green items until you
discover that one of those is an L.

As was discussed earlier, conjunctions
of two or more basic features have been
a subject of particular theoretical interest
since Treisman and Gelade (1980) declared
that they required inefficient, serial search.
As noted, it subsequently became clear that
conjunction search could be very efficient if
the stimulus conditions were correct. In the
context of the discussion of guidance, we can
see that conjunction search could be efficient
if observers could make effective use of
guidance. Consider Figure 13.9. If you can
guide attention to red and vertical and oval,
you should rapidly find the one red, vertical
oval. Now switch to blue, horizontal, and
rectangle, and, again, you rapidly find your
target. Indeed, if top-down feature guidance
were perfect, such searches could be inde-
pendent of set size. In practice, however, it
appears that bottom-up contrasts between the
items in a display like Figure 13.9 exact some
cost. The resulting search, while efficient, is
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Figure 13.9 Triple conjunctions of color, shape,
and orientation.

not perfectly efficient (Nordfang & Wolfe,
2014).

Intuition seems to suggest that guidance
to multiple features is nested. In the previous
example, people might feel as if they first
segregate out all the red items, then the
vertical members of that subset, and then the
ovals. In fact, it appears that observers can
guide simultaneously to multiple features. If
the task is structured so that observers must
search a subset (e.g., find the odd item in the
red subset), search times are much slower
(Friedman-Hill & Wolfe, 1995). Moreover,
search for triple conjunctions is more efficient
than search for standard two-way conjunc-
tions (Wolfe et al., 1989), again suggesting
that more simultaneous sources of guidance
are better. It is possible that different fea-
tures, even if invoked at the same time, take
different times to become fully active (Olds,
Cowan, & Jolicoeur, 2000a, 2000b).

Models of search propose that guid-
ance to particular features is accomplished
by adjusting the weight given to different
sources of information. This can be seen
in physiological studies. For example, if a

monkey is trained to look for a target that
is a red crescent, responses to red color and
crescent shape are boosted across the visual
field (Bichot, Rossi, & Desimone, 2005) (see
also Treue & Trujillo, 1999). Guidance has
a hierarchical structure to it. It is possible
to guide attention to a specific color, like
red, but it is also possible to guide attention
preferentially to the entire attribute of color
(Found & Muller, 1996), suggesting that
weights can be set at multiple levels in the
system (Rangelov, Muller, & Zehetleitner,
2011, 2012). The observer can be induced
to attend specifically to singleton items,
regardless of their dimensions (the so-called
singleton mode; Bacon & Egeth, 1994;
Egeth, Leonard, & Leber, 2010). Treisman’s
original feature integration model had a set
of feature maps within each dimension, all
of these feeding a master map (Treisman,
1986a). Successor models like guided search
(Wolfe, 1994) allow for weights to be set at
each of these levels, with attention guided
by a priority map (Fecteau & Munoz, 2006;
Serences & Yantis, 2006). The priority map
combines inputs from multiple features
and attributes into a single representation,
though it is possible to find situations where
a stimulus seems to produce an attentional
deployment and a response without the need
for a map that combines signals from mul-
tiple dimensions (Chan & Hayward, 2009,
2012) (but see Zehetleitner, Proulx, & Müller,
2009).

Search Asymmetries

If we have two stimuli, A and B, it is some-
times easier to find an A among Bs than a B
among As. This is known as a search asym-
metry. Early on, Treisman et al. (Treisman &
Gormican, 1988; Treisman & Souther, 1985)
proposed that asymmetries could be useful in
determining what properties counted as basic
features in visual search. The core idea is that
it is easier to find the presence of a feature
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than its absence. For example, search for a
moving item among stationary items is easier
than a search for a stationary item among
moving distractors. This would be taken as
evidence that motion was a basic feature.
Rosenholtz (2001) offers an important cau-
tion. To continue with the motion example, in
a search for a moving item among stationary
distractors, the distractors are homogeneous;
they are all stationary. In the reverse situation,
the moving distractors could be heteroge-
neous if distractors are allowed to move in
multiple directions. In fact, the asymmetry
does persist if distractors all move in one
direction, but it is weaker (Royden et al.,
2001). Many interesting nuggets of informa-
tion can be derived from this sort of analysis
of search asymmetries. It is easier to find a
tilted line among verticals than vice versa.
This could be taken as evidence that tilt is the
feature and that the main axes of vertical and
horizontal are defined by the absence of that
feature (Wolfe, Friedman-Hill, et al., 1992).
It is easier to find orange among yellow than
vice versa, suggesting that redness might
be the critical feature in the orange target,
whereas both yellow targets and orange
distractors contain yellowness.

In the asymmetries just described, the
more efficient of the two searches is typically
very efficient, with a slope near zero. In
contrast, there are many tasks in which there
is an asymmetry but where both searches
are inefficient. Such asymmetries should
not be held to be diagnostic of the presence
of a basic feature. Rather, in Treisman and
Souther’s words, they seem to reflect “the
speed at which distractors can be serially
checked to determine if they meet the tar-
get specification” (Treisman & Souther,
1985, p. 292). Thus, Treisman and Souther
offer the case of letters and mirror-reversed
letters. Mirror-reversed targets are found
more efficiently among normal letter dis-
tractors than normal letters are found among

mirror-reversed distractors (Frith, 1974;
Ostrovsky et al., 2005; Reicher, Snyder, &
Richards, 1976; Richards & Reicher, 1978).
However, both searches are relatively inef-
ficient, and the difference probably reflects
the speed with which the distractors can be
rejected. Normal letters are more familiar
and can be dismissed more quickly.

Searching for Two Features Within a
Dimension

In Figure 13.9, we saw that it was easy to
find a target defined by a triple conjunction
of features. In Figure 13.10, we see, in the
online color figure, that this is not the case
when all the features are drawn from the
same dimension—in this case, color. The
target is the item that is red, blue, and yellow.
It is not hard to identify once it is attended.
However, it will need to be searched for in an
inefficient manner. This would be true even
if only two colors defined the target (Wolfe
et al., 1990). Interestingly, guidance seems
to be limited to one feature per dimension or,
perhaps more precisely, attempting to guide
to the item that is, say, red and green, turns
out to guide to any item that is either red or

Figure 13.10 A triple color × color × color con-
junction. Find the item that is red, blue, and yellow.
It is not hard to identify, but the search will be inef-
ficient.
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green, at least initially (Berggren & Eimer,
2016).

This is not just an oddity of color. Search
is inefficient if observers look for two sizes or
orientations as well: For example, search will
be inefficient for a vertical and oblique “X”
among a mix of distractors that formed from
oblique and horizontal components or from
vertical and horizontal components (Wolfe
et al., 1990).

There is an exception to the one-value-per-
dimension rule. It is possible to search for
an object of one color with a part of another
color. So a red house with yellow windows
can be found among blue houses with yellow
windows and red houses with blue windows,
though this is still a color × color conjunction
(Wolfe, Friedman-Hill, & Bilsky, 1994).
Apparently, guidance is sensitive to the
part–whole structure of objects. The same
result is found for size but, curiously, not
for orientation (Bilsky & Wolfe, 1995). As a
possible explanation, Bilsky and Wolfe noted
that a red thing with a yellow part was still
a red thing with a yellow part, even if that
object was rotated in the image plane. The
same would be true of a big thing with a
small part but not of a vertical thing with an
oblique part.

Multisensory Guidance to Objects

We live in a multisensory perceptual world
(Stein, 2012), and many objects of our search
are not purely visual. If you are walking
though the woods looking for a bird, your
search is, self-evidently, a combination of
visual and auditory search. You may orient
to a snatch of birdsong and, searching for the
source, you will restrict your visual search
to items that could plausibly be birds. What
is the nature of that multisensory guidance?
It is not easy to simply transfer the logic of
something like a color × orientation search to
a color × auditory search. Imagine a search
for the buzzing red item among buzzing green

and clicking red items. If the visual stimuli
are presented on the normal computer screen,
the auditory stimuli will be hard to localize
and, worse, they will tend to merge together.
If the stimuli are sparser and more spread out,
eye and head movements will be required,
and the efficiency of search will be harder
to establish (Sanders & Houtmans, 1985).
However, there is evidence for multisensory
guidance of attention (Dalton & Spence,
2007; Ngo & Spence, 2010). Some of the
most successful work has involved benefits
from the presence of a single sound as in the
“pip and pop” work of Van der Burg, Olivers,
Bronkhorst, and Theeuwes (2008). They
found that a “pip” sound, synchronized with
the temporal properties of the visual target,
made an otherwise hard-to-find time-varying
visual stimulus “pop” out of the display even
though the sound was otherwise uninforma-
tive. Fujisaki, Koene, Arnold, Johnston, and
Nishid (2006) reported that search for such
targets defined by audiovisual conjunctions
was quite inefficient. However, Van der
Burg, Cass, Olivers, Theeuwes, and Alais
(2010) went on to show that the “pip and
pop” effect did produce efficient search when
transient, square-wave auditory stimuli were
used. Similarly synchronized but gradual,
sinusoidal variation did not work.

If we accept that there is some form of
multisensory guidance, how early in sensory
processing is this guidance made manifest?
One possibility is that multisensory objects
are created early in processing and that atten-
tion is directed to those objects (Matusz &
Eimer, 2011). Others argue that the inter-
actions are late, involving more cognitive
processes (Orchard-Mills, Alais, & Van der
Burg, 2013). Probably there are interac-
tions at both levels (Talsma, Senkowski,
Soto-Faraco, & Woldorff, 2010). The bird
example with which we started this section
seems likely to be a relatively late phe-
nomenon where, perhaps, an auditory signal



Classic Visual Search Tasks: What Do the Data Tell Us? 25

cues attention, as well as the head and eyes, to
a region, and then visual attention is guided
to birdlike objects.

The Role of Objects

In the online version of Figure 13.11, look for
green vertical targets.

After a bit of inspection, you will proba-
bly conclude that there are no such targets.
If you now switch your search to green
horizontal targets, you will probably decide
that there is one, partially occluded in the
lower left quadrant. In fact, there are clearly
visible green vertical contours in the upper
left and lower right quadrants, but these do
not seem to count as green vertical targets.
For those reading this in black and white,
the two squares in the upper left are green.
These green objects in the figure are not
vertical, even though they might have vertical
edges or might be occluded by a vertical
edge. Apparently, when asked to search for
green vertical, you were searching for a
green vertical object. Moreover, the green
horizontal object in the lower left is green
horizontal only if it is amodally completed
behind the pink and yellow occluders. This is

Figure 13.11 Targets are green vertical.

more than a matter of fooling the observer
with ambiguous instructions (green vertical
target). Visual search and visual selective
attention appear to be preferentially directed
to objects and not to raw image features.

There is considerable evidence for a pref-
erential role of objects in visual selective
attention and search. Duncan (1984) found
that confirming the presence of two features
on one object was easier than confirming
one feature on each of two objects even
when the objects overlapped in space. Egly,
Driver, and Rafal (1994) found that attention
to one part of a simple object seemed to
spread to other parts of the same object but
not to equidistant parts of another object.
New objects seem to preferentially capture
attention (Yantis, 1993). Kahneman and
Treisman proposed that attention operated on
object files (Kahneman & Treisman, 1984;
Kahneman, Treisman, & Gibbs, 1992) that
collected all the basic features of an object
into one entity in the mind, and Treisman
had shown that search for two features was
difficult when those features were not present
on the same object (disjunctive search; Treis-
man & Gelade, 1980). Subsequent work has
made clear that, even when spatial factors are
controlled, conjunctions of two features on
one object are easier to find than disjunctions
(Goldsmith, 1998). Wolfe and Bennett (1997)
argued that, when discussing the status of
the stimulus before selective attention was
deployed, it might be best to talk about
“preattentive object files” that they conceived
of as “shapeless bundles of basic features”
waiting to be bound by an act of attention.
The pluses of Figure 13.2 were introduced
by Wolfe and Bennett (1997), who argued
that, prior to being selected by attention, each
of these was represented as a preattentive
object file having light purple and dark green
and vertical and horizontal features. Only
with attention did the color get bound to
the orientation.
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As illustrated by the green horizontal
object in the lower left of Figure 13.11, the
objects of attention are sophisticated enough
to account for occlusion. Rensink and Enns
(1998) found that it was very hard to search
for a distinctive piece of an occluded object
if that piece could be interpreted as part of
a larger item. For example, you may find
it hard to locate the triangular regions in
Figure 13.11. Online, one will be green. All
of them are the results of occlusion forming
a triangular region in the image. None are
triangular objects (see also Wolfe, Reijnen,
et al., 2011). This sophistication points to a
problem. If attention is directed to objects,
it follows that there are preattentive objects
available to be attended. That, in turn, implies
that the scene is segmented into objects in
parallel. That is hard to do. Part of the prob-
lem is that the definition of “object” in search
is very task dependent. Consider a social
media photograph of a group of people. You
could search for people or you might search
for eyes. In the second search the objects are
part of the objects of the first search. What,

then, is computed in the initial segmentation
into “objects”? To hedge our bets and, in
part, to acknowledge that we do not have a
clear answer, researchers speak of an initial
partition of the scene into “proto-objects”
(Rensink, 2000; Russell, Mihalas, von der
Heydt, Niebur, & Etienne-Cummings, 2013;
Yanulevskaya, Uijlings, Geusebroek, Sebe, &
Smeulders, 2013; Yu, Samaras, & Zelinsky,
2014) or preattentive object files. The exact
nature of the “objects of attention” remains
to be uncovered.

SCENE GUIDANCE

In Figure 13.12, look for traffic lights. Since
you know something about what traffic lights
look like, you can probably guide your atten-
tion to things that might have traffic light
features. However, it should be clear that
feature guidance is not the only force that
is shaping the deployment of your selective
attention. You know enough about urban
intersections to know where traffic lights are

Figure 13.12 Look for traffic lights at this Shanghai intersection.
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and are not likely to appear. This guidance
is not based on properties of the target but
on the structure and content of the rest of
the scene. We can call this “scene guidance.”
Scene guidance is not a factor in tasks like
the one illustrated in Figure 13.11, because
those scenes have no meaningful structure.
However, it is a major factor in real-world
searches, embedded as they are in the real
world.

Part of becoming an expert searcher in
a specific domain is learning how to let the
scene guide attention. When radiologists’
eye movements are examined, it is found
that experts look at less of the image than
do novices (Kundel & La Follette, 1972).
Just as you know where to look for traffic
lights, a radiologist knows where to look
for lung cancer in a chest X-ray. Similarly,
a chess player can find specific pieces on
a real game board more quickly than on a
board where the pieces have been placed at
random (Brockmole, Hambrick, Windisch, &
Henderson, 2008). The features of the target
remain the same, but the structure of the
scene tells the expert where to look.

In thinking about scene understanding,
Biederman (1977) suggested that “something
roughly analogous to what may be needed to
account for the comprehension of sentences
is required to account for the speed and
accuracy of the comprehension of scenes
never experienced before.” He went on to
propose that one could talk about scene syn-
tax and scene semantics. Syntax refers to the
structure of the scene. A coffee mug floating
in midair would be a syntactic violation of
the grammar of a scene, because coffee mugs
don’t float. Semantics refers to the meaning
of a scene. Knowing where an object would
be meaningful in a scene helps guide your
attention when you are looking for that
object (Castelhano & Witherspoon, 2016).
A coffee mug sitting in a bathtub would be a
semantic violation because, although a coffee

mug can be placed in the tub, it does not
normally make sense in that location (Bie-
derman, Mezzanotte, & Rabinowitz, 1982).
Vo and Wolfe (2013) found that syntactic
and semantic anomalies produced different
electrophysiological signals.

It has been clear for a long time that
search in a scene is guided by the content of
that scene (Enoch, 1959b; Kingsley, 1932;
Matusz & Eimer, 2011). That said, it is
difficult to quantify the efficiency of search
in scenes because it is essentially impos-
sible to establish the set size of a scene.
Returning to Figure 13.12, in a search for
traffic lights, is each person an “item”? How
about each shoe or the black diamonds on
the wall in the distance? However one tries
to measure the set size of a scene, the data
indicate that search for meaningful objects in
meaningful scenes is very efficient (Wolfe,
Alvarez, Rosenholtz, Kuzmova, & Sherman,
2011). Search for less meaningful targets
can be very laborious (Pomplun, 2006).
Neider and Zelinsky (2008) introduce the
useful idea of the “effective set size,” the
subset of items in a scene that compete for
attention in a search for a particular target.
Thus, in Figure 13.12, the effective set size
would be different in a search for shoes and
a search for women. We may not be able to
precisely quantify the effective set size in a
natural scene, but it is clear that the effective
set size is almost always far smaller than
any count of the objects in a scene for any
realistic search.

Thus, visual searches in scenes are
strongly guided by the observer’s under-
standing of the scene. One way to see this is
to ask observers to search after a very brief
glimpse or preview of a scene. Castelhano
and Henderson (2007) pioneered a method
where observers could view only a small part
of a scene around the point of fixation. Under
these conditions, search is akin to sweeping a
flashlight around a darkened room. The brief
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preview is enough to give the observer
considerable guidance as to where to direct
the aperture of visibility. The information
available in a flash is both syntactic and
semantic. Showing a preview of one kitchen
does not help very much in a search through
another kitchen. It is important to get a
quick impression of the layout of the space
(Greene & Oliva, 2008), as well as to gather
some information about the scene’s con-
tents (de Groot, Huettig, & Olivers, 2016).
The scene information can be thought of
as providing a Bayesian prior that tells the
searcher that a target is more or less likely in
each location (Torralba, Oliva, Castelhano, &
Henderson, 2006). Using measures of eye
movements (Ehinger, Hidalgo-Sotelo, Tor-
ralba, & Oliva, 2009) or measurements of
the deployment of a magnifier (Ehinger &
Wolfe, 2015), one can see this guidance at
work in tasks as varied as search for humans
in natural scenes (Ehinger et al., 2009) or
for gas stations in overhead satellite imagery
(Ehinger & Wolfe, 2016).

Scene guidance poses a problem for sim-
ple search architectures, described earlier in
this chapter. If object recognition requires
attention and involves a severe bottleneck in
processing, how can a scene guide attention?
Wouldn’t you need to attend to the objects
before you could guide attention based on
an understanding of the scene containing
those objects? There are two important
components of an answer to that question.
First, significant information about a scene
can be extracted in a very brief glimpse
(Biederman, Rabinowitz, Glass, & Stacy,
1974). This gist includes a spatial structure
that can be extracted without processing indi-
vidual items (Oliva & Torralba, 2001). This
information, based on the raw (unbound)
image statistics, is adequate to very rapidly
categorize scenes (mountain, beach, etc.)
(Greene & Oliva, 2008, 2009) and can be
used to detect the presence of some classes

of objects (e.g., animals: F. F. Li, VanRullen,
Koch, & Perona, 2002; Thorpe, Gegenfurt-
ner, Fabre-Thorpe, & Bulthoff, 2001; or
vehicles: Peelen, Fei-Fei, & Kastner, 2009).
The timing of this gist effect makes it very
unlikely that the gist is the result of repeated
acts of selective attention, binding, and
recognition. Instead, it has been proposed
that there is visual experience that arises from
both a selective pathway and a nonselective
pathway (Wolfe, Vo, Evans, & Greene, 2011).
The selective pathway is required for most
standard object recognition. The nonselective
pathway fills in the visual experience at
currently unattended locations. It is useful
for gist and other statistical analyses of the
image (Alvarez, 2011), and its outputs can
guide attention.

In addition, some aspects of scene guid-
ance can be quite slow (de Groot et al., 2016;
Kunar, Flusberg, & Wolfe, 2008b). As one
processes the details of a scene, multiple
objects will be attended. These will inform
subsequent deployments of attention. Thus,
it may require attention to identify the fork
on the dining room table. However, once
identified, the fork can help to guide attention
to the spoon.

Scene structure can speed search even if
the scene is meaningless. Chun and Jiang
(1999) developed the contextual cueing
paradigm in which observers might search a
series of seemingly meaningless arrays for a
specific letter. Unbeknownst to the observer,
some of the arrays repeat. Over time, RTs for
repeated displays become shorter than those
for unrepeated displays. The leading account
of contextual cueing would be that the
implicitly recognized scene guides attention
toward the target (e.g., Geyer, Zehetleitner, &
Muller, 2010; Olson, Chun, & Allison, 2001),
though there is data to support the alternate
view that the context serves to speed response
once the target has been attended (Kunar,
Flusberg, Horowitz, & Wolfe, 2007).
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THE ROLE OF MEMORY IN VISUAL
SEARCH

The contextual cuing phenomenon shows a
role for memory in visual search. Observers
show clear evidence that they remember pre-
viously viewed displays, even if that memory
is implicit. Interestingly, there are a variety
of situations where memory seems to have
less of an effect than one might expect. For
example, suppose an observer is viewing a
display of six letters. On each trial, he is
asked if a specific target letter is present
(Is there an “E”? Is there a “Q”?). The dis-
play remains unchanged across trials. If this
search task is repeated for a display of three
letters, the difference between RTs for the
two set sizes can be used to derive the slope
of an RT × set size function for the first trial
or for the nth trial. The first trial resembles a
standard inefficient letter search with a slope
around 35 ms/item. The surprise is that this
slope remains essentially unchanged over
several hundred trials (Wolfe et al., 2000).
Even though the observer learns the display
perfectly, it appears that this memory is not
useful in search. Results are about the same
as if all the letters are changed on each trial.
An explanation can be seen if the visual
display is removed and the observers perform
the task from memory. They can do it, but the
slope for the memory search is steeper than
that for the visual search (Kunar, Flusberg, &
Wolfe, 2008a), suggesting that in repeated
search observers do the visual search over
again de novo each time simply because
vision wins a race with memory search. On
most trials, vision finds the target first.

Memory appears to have a similarly lim-
ited role within a search. Many standard
models of search assumed that inefficient
searches involved sampling from the visual
display “without replacement.” That is, atten-
tion might select one item after another but,
once selected and rejected as a distractor,

those items would not be selected again.
“Inhibition of return” (Posner & Cohen,
1984) was proposed as a mechanism by
which rejected distractors were tagged
during search (Klein, 1988). Horowitz and
Wolfe (1998) called this into question with an
experiment in which observers looked for a
T among Ls in a display where all items were
randomly replotted every 100 ms, making
inhibitory tagging impossible. This had sur-
prisingly little effect on search slopes. Their
claim that “visual search has no memory”
(Horowitz & Wolfe, 1998) was controversial
(Horowitz & Wolfe, 2003, 2005; Hulleman,
2010; Korner & Gilchrist, 2008; Peterson,
Kramer, Wang, Irwin, & McCarley, 2001;
Shore & Klein, 2000). Most likely, there is
some limited memory for rejected distractors,
enough to act as a “foraging facilitator” that
prevents perseveration on one salient distrac-
tor (Klein & MacInnes, 1999; Z. Wang &
Klein, 2010).

These failures of memory tend to be seen
with simple searches that take a fraction
of a second. It is intuitively obvious that
memory serves a more substantial role in
more extended search. If you are ransacking
the house for your car keys, there is a role for
memory of where you have already searched,
but even in these cases you may find yourself
revisiting previously examined locations. In
laboratory tasks, there is a significant role for
memory when observers search repeatedly
through real scenes (Vo & Wolfe, 2012;
Wolfe, Alvarez, et al., 2011).

SEARCH TERMINATION

A role for memory in visual search was a part
of standard models of search, in part because
it provided an account of how observers knew
when it was time to abandon an unsuccessful
search. If you were marking each rejected
distractor, you could stop searching when
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all the distractors were marked. In guided
search, you could stop searching when all
plausible distractors had been checked.
However, if memory for rejected distractors
is too impoverished to support this sort of
search termination rule, a different rule must
be at work. Various approaches have been
tried (Chun & Wolfe, 1996; Cousineau &
Shiffrin, 2004; Zenger & Fahle, 1997). As a
general rule, they involve attempting to set a
quitting threshold based on time (How long
have I been searching?) and some estimate of
the probability that there is a target present.
For example, a version with some clever
features is found in the “competitive guided
search” model of R. Moran, Zehetleitner,
Mueller, & Usher (2013). In that model, the
probability of quitting is calculated after each
deployment of attention. P(quit) is defined
as QuitWeight/(sum(AllSalienceWeights)+
QuitWeight). The QuitWeight is a param-
eter that changes by increments after each
deployment of attention, and the sum(All
SalienceWeights) is a measure of how
target-like the stimuli appear to be. That sum
is likely to be higher for a target-present trial,
making it less likely that the trial will end,
even if the target has not yet been found. The
QuitWeight parameter will be set to grow
faster for simple feature searches than for
harder tasks, so those trials can end more
quickly when no target is present. Quitting
models can have a more explicitly Bayesian
flavor in which there is an explicit estimate of
the likelihood that a given stimulus contains
a target (Ehinger & Wolfe, 2016). Such
models can incorporate scene-based priors
(“This is the sort of scene where I might find
a turkey.”).

TARGET PREVALENCE

In the lab, targets are typically presented on
50% of trials. This target prevalence might

go to 100% in tasks where observers are
asked to localize the target. Target prevalence
varies widely in real-world search tasks.
In the search for your car keys, the target
is almost undoubtedly present, even if that
presence is not obvious. At the other extreme,
targets are very rare in search for threats at
the airport checkpoint or search for breast
cancer in a screening program (about 0.3%
in North America; Lee, Bhargavan-Chatfield,
Burnside, Nagy, & Sickles, 2016). Target
prevalence has a substantial effect on search
behavior. Rare targets are missed simply
because they are rare (Mitroff & Biggs,
2014; Wolfe, Horowitz, & Kenner, 2005).
In mammography, for example, radiologists
may miss twice as many cancers when preva-
lence is low (Evans, Birdwell, & Wolfe,
2013). Similar effects occur in other medical
screening situations (Evans, Tambouret,
Wilbur, Evered, & Wolfe, 2011) and with
airport screeners (Wolfe, Brunelli, Rubin-
stein, & Horowitz, 2013). Prevalence does
not generally have a major effect on the
detectability of stimuli (e.g., in radiology;
Gur et al., 2003, 2008; Reed, Ryan, McEn-
tee, Evanoff, & Brennan, 2011). Rather, the
main effect appears to be on decision criteria
(Wolfe & VanWert, 2010). At low prevalence,
observers make more miss errors, but few
false alarm errors. At high prevalence, this
pattern reverses. Low prevalence also induces
observers to terminate search more quickly
(Wolfe et al., 2007). This can have an effect
on overall accuracy when observers simply
quit before doing an adequate search or when
they make a motor error, responding “absent”
out of habit (Fleck & Mitroff, 2007).

FORAGING TASKS

The classic search literature has mostly dealt
with search for the presence or absence of a
single target item. Real-world search tasks
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often involve search for multiple targets: for
example, pulling all the pennies out of the
coin bowl or picking ripe berries off a bush.
These are foraging tasks and have been much
studied in the animal literature (Stephens,
Brown, & Ydenberg, 2007; Stephens &
Krebs, 1986). For present purposes, these
tasks are of most interest for the search ter-
mination problems they pose. When do you
abandon foraging, given an unknown num-
ber of targets? When targets are plentiful,
Charnov’s marginal value theorem (MVT;
Charnov, 1976) provides a good account. It
holds that the forager will leave the current
patch or bush for the next one when the
instantaneous yield from the current patch
falls below the average rate for the task as
a whole. Developed to account for animal
behavior, this does a good job describing
human performance in simple simulated
berry picking (Wolfe, 2013). If targets are
more sparse (as in many medical imaging
tasks), MVT does not work well and other,
more Bayesian theories better describe the
data (Cain, Vul, Clark, & Mitroff, 2012;
Ehinger & Wolfe, 2016).

HYBRID SEARCH AND HYBRID
FORAGING

In other real-world search tasks, there may be
more than one target type. Think of a shop-
ping list held in memory. These combinations
of visual search with memory search have
been called “hybrid search” tasks (Schnei-
der & Shiffrin, 1977). Older research used
a relatively small number of alphanumeric
targets (Neisser, Novick, & Lazar, 1963).
However, if one uses specific photographs
of objects as targets, it is possible to have
observers search for literally hundreds of
different target types at the same time. When
visual set size and memory set size are varied
orthogonally, it is found that RTs increase

linearly with the visual set size but logarith-
mically with the memory set size (Wolfe,
2012). This log compression of the memory
search makes it possible to search for any of
100 possible targets in seconds rather than
the many minutes that might be required
if RT increased linearly with memory set
size. The log function is very robust, being
found when multiple categories are used as
targets (find all animals, socks, and coins:
Cunningham & Wolfe, 2014) or when word
lists are used (Boettcher & Wolfe, 2015).
The ability to search for 100 target types at
the same time argues against the idea that the
target templates for search reside in visual
working memory (VWM), since VWM is
held to have a capacity of three or four items
(Drew, Boettcher, & Wolfe, 2015). Still, it
is clear that VWM plays a role in guiding
search (Olivers, Peters, Houtkamp, & Roelf-
sema, 2011). The precise nature of that role
in hybrid search remains to be worked out.

If observers are asked to search for mul-
tiple instances of multiple targets, they are
engaged in a “hybrid foraging” task. Here
a somewhat different set of questions come
to the fore. Suppose you are sorting the US
pennies, nickels, dimes, and quarters out of
your bowl of coins from around the world.
If the last coin that you selected was a dime,
with four targets in the memory set, we can
ask if all four target types are equally likely
to be selected next. The answer is “no.” Even
if the underlying probabilities are the same,
you are biased to pick what you have just
picked. Selections tend to go in runs of multi-
ple instances of the same type (Jóhannesson,
Thornton, Smith, Chetverikov, & Kristjáns-
son, 2016; Kristjansson, Johannesson, &
Thornton, 2014). Switching from one type
to another can be seen as a variety of search
termination decision, and, as in foraging
more generally, the marginal value theorem
predicts average behavior quite well, though
predicting the foraging behavior on a finer
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grain requires modeling of the interaction of
vision, attention, and memory in ways that
are just beginning to be considered.

MODELING APPROACHES

Space does not permit a comprehensive
survey of models of visual search (for recent
surveys see Nobre & Kastner, 2014). The
classic debate has been between serial and
parallel models. Serial accounts are typically
two-stage accounts with intellectual roots in
Triesman and Gelade’s feature integration
theory (1980). Following Neisser (1967),
they proposed an initial parallel stage of
processing that could handle processing of
basic features across the entire visual field
followed by a serial stage in which attentional
resources were deployed from item to item
to bind features, allowing stimuli defined by
conjunctions of features to be found, but only
one at a time. Models like the early versions
of guided search (Wolfe et al., 1989) and
later versions of feature integration theory
(Treisman & Sato, 1990) proposed that infor-
mation from the first stage could be used to
guide deployment of attention in the second
stage (see also Cave, 1999; R. Moran et al.,
2013).

Parallel models dispense with the bottle-
neck following the first stage. Often, these
models see search as a signal-detection prob-
lem with uncertainty about the location of the
signal (the target). Early versions accounted
for letter search tasks (Kinchla, 1974). These
models have their greatest success in account-
ing for detection of fairly simple targets (e.g.,
Gabor targets) in relatively small arrays
of distractors (McElree & Carrasco, 1999;
Palmer, 1995; Palmer, Verghese, & Pavel,
2000; Verghese, 2001). In Bundesen’s theory
of visual attention (TVA), multiple items
race in parallel to occupy visual working
memory. TVA can be placed in the family of

parallel models (Bundesen, 1990; Bundesen,
Vangkilde, & Petersen, 2015).

As noted earlier, simple RT× set size func-
tions are not adequate to distinguish between
standard serial and parallel architectures
(Townsend, 1971, 1976, 1990; Townsend &
Wenger, 2004). One approach to this prob-
lem has been to move beyond just looking
at average or mean RTs and to look at the
whole RT distribution (R. Moran et al., 2015;
E. M. Palmer, Horowitz, & Wolfe, 2009;
Sung, 2008; Wolfe, Palmer, et al., 2010).
Others have developed sophisticated new
RT and/or accuracy methods to distinguish
between classes of models (e.g., Baldassi &
Verghese, 2002; Dosher et al., 2004; Thorn-
ton & Gilden, 2007), though proponents
of the losing model can usually tweak the
model to accommodate the new data. Many
models attempt to ground themselves in
the neurophysiological data rather than in
behavioral RT data (for reviews see Nobre &
Kastner, 2014; Reynolds & Chelazzi, 2004).
The most influential of these is biased com-
petition (Desimone & Duncan, 1995), based
on work showing that items in the visual field
compete for control of visual cortical neurons
(J. Moran & Desimone, 1985).

More recent modeling has tended to blur
the distinction between serial and parallel
models. For instance, when essentially par-
allel accounts include eye movements, they
are incorporating a necessarily serial aspect
of the process (Najemnik & Geisler, 2005;
Pomplun, Reingold, & Shen, 2003; Zelinsky,
2008). Similarly, models that place a major
focus on the role of peripheral crowding
(Rosenholtz et al., 2012) need to worry
about the serial deployment of the fovea
even if the model does not see a need for
serial deployments of attention. Turning to
the two-stage models, estimates for the rate
of deployment of covert attention in search
are in the vicinity of 20 Hz, but accounts
of object recognition typically assume that
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processing takes several hundred millisec-
onds. One way to accommodate these two
temporal parameters into a single model is
to assume that object recognition in search
is a pipeline. Items are selected, say, every
50 ms, but they may take 300 ms to be rec-
ognized. This means that multiple items will
be in the process of recognition at the same
time—in parallel—even if individual items
are selected in series. If it is possible to select
more than one item at a time, the distinctions
between parallel and serial models are further
blurred. In retrospect, this is not surprising.
The neural substrate of the human search
engine is neither strictly serial nor parallel, so
an effective model is likely to reflect that fact.
In the end, the mark of a successful model
will be its ability to capture the richness of
the human search behavior that we have been
describing in this chapter.

LOOKING BACK AND LOOKING
FORWARD

Three or four decades of work on visual
search support a number of conclusions
(though, to be fair, good scientists could be
found who might argue with each of these):

• We search because some aspects of visual
processing are severely capacity limited.
In particular, object recognition appears to
be limited to one item or a very small num-
ber of items at a time.

• Interpretations may differ, but there is
a reliable body of empirical results on
search. This is especially true for oft-
repeated searches for targets like feature
singletons or color × orientation con-
junctions in random arrays of distractors.
These are highly replicable findings.

• In order to be useful, most searches are
strongly guided. Attention is guided
toward items and/or locations displaying

target features and away from parts of
scenes—especially structured, meaning-
ful scenes—that are unlikely to contain a
target.

• The list of guiding features is limited rela-
tive to the set of all possible visual proper-
ties that could potentially guide attention.
Membership on the list needs to be empir-
ically established, as there does not appear
to be a clear principle that mandates
membership.

• Features that can guide attention must, by
definition, be available preattentively, but
it does not follow that some pieces of the
visual system are exclusively preattentive
while others are attentive. A preattentive
representation of, say, color in one neural
location may become attentive later in the
sequence of processing.

• Strict dichotomies between serial and
parallel processing are probably unwise.
Search processes are probably a mixture
of both. For instance, if items are selected
every 50 ms or so and then processed for
recognition for 200–300 ms, then serial
selection and parallel processing of items
would be occurring simultaneously.

Looking forward, there are a many topics
that would benefit from more research. Our
goal is to understand the ways that humans
search in the world. For practical reasons,
most of the work in this field has involved
search of single images on computer screens.
Even the efforts to apply visual search results
have typically involved imaged-based search
tasks in the real world (e.g., medical image
perception or airport baggage screening).
More typical real-world search has qualities
quite different from most laboratory search
tasks. The searches are extended in time. The
bulk of lab searches take on the order of 0.2
to perhaps 10 seconds. Your search for the
cat takes longer. Moreover, that cat search
takes place in a 3D space with a mobile
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observer. In the lab, you might search for the
T among Ls for hundreds of trials. If you
are putting that cat in the basement for the
night, you search for the cat. You then search
for the basement (guided, one presumes, by
memory). You search for the cat food to give
the beast an evening snack. There is very
little work on this sort of concatenated series
of searches, spread out over significant time.
Perhaps with the advent of commercially
available virtual reality systems, researchers
will begin to study tasks of this sort. If so, the
next Stevens’ Handbook might feature quite
a different chapter on visual search.
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