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The last few years have produced enormous growth in the 
radiologic application of computer vision deep learn-

ing (DL) algorithms and machine learning, often referred 
to as artificial intelligence (1). In this issue of Radiology, 
Yala et al (2) demonstrated the effectiveness of DL meth-
ods in assessing breast cancer risk by using clinical data, 
breast density scores, and mammograms. On March 28, 
2019, the U.S. Food and Drug Administration announced 
a proposed rule (3) to update the landmark policy passed 
by Congress in 1992 to ensure quality of mammography 
for early breast cancer detection (known as the Mammog-
raphy Quality Standards Act). One of the major amend-
ments proposed by the Food and Drug Administration is a 
requirement to report breast density and communicate this 
finding in lay language to patients. This announcement 
makes the Yala et al article timely because it illustrates the 
limits of a simple breast density score and points to better 
estimates of the risk of developing breast cancer that can 
be derived from information obtained at mammography.

Yala et al (2) retrospectively examined nearly 90 000 
consecutive screening mammographic examinations 
from almost 40 000 women obtained over 4 years 
(2009–2012) at Massachusetts General Hospital (Bos-
ton, Mass). The authors defined four breast cancer risk 
models intended to quantify the probability of discover-
ing breast cancer within 5 years after a mammographic 
screening examination that was negative for cancer. The 
first model used clinical data including breast density 
described by using four categories (almost entirely fatty, 
scattered areas of fibroglandular tissue, heterogeneously 
dense, and extremely dense). Risk was calculated by 
using a model developed by the authors. The second 
model calculated risk by using the clinical standard 
Tirer-Cuzick model that also included breast density 
(4,5). The third model calculated risk on the basis of 
DL analysis of full-resolution mammography only. The 
fourth model was a hybrid that combined DL analysis 
of full-resolution mammography with clinical data, in-
cluding breast density.

Yala et al (2) found that DL risk models (ie, the third 
and fourth models) consistently performed better than 
the first and second models for prediction of breast can-
cer within 5 years after mammography. The hybrid DL 
model was the best and the clinical data model was the 
worst. DL risk models performed similarly across de-
mographic subgroups, and the fourth model produced 

an area under the receiver operating characteristic curve 
of 0.71 for white and African American women. This 
lack of difference between groups is clinically important 
because traditional models, such as the second model, 
do not perform equally well for these two groups. For 
example, Yala et al showed that the diagnostic per-
formance of the Tirer-Cuzick model was different for 
white versus African American women (areas under the 
receiver operating characteristic curve, 0.62 and 0.45, 
respectively).

The third model, which used only DL analysis of full-
resolution mammography, outperformed the first and 
second models. This suggested that there was more in-
formation about breast cancer risk on the mammograms 
than in the clinical data used by standard risk models. 
Because breast density scores are included in the stan-
dard models, it follows that those density scores do not 
reflect all the relevant information on the mammogram. 
This is, perhaps, unsurprising when one considers that 
a four-value density score (2 bits of information) is a 
result of compression of the hundreds of millions of bits 
of information contained on a mammogram.

The study by Yala et al (2) offered some interesting 
and significant evidence that DL can contribute to risk 
assessment. Of course, as the authors noted, there are 
limitations to this work. Whereas this is a relatively 
large study, it is retrospective and carries all dangers of 
biases associated with this approach to study design. 
Moreover, the study was performed by using data from 
a single institution and mammograms acquired by using 
the scanners from a single vendor.

Like computer algorithms, radiologists can also find 
unanticipated information at mammography. Experts 
can distinguish normal from abnormal mammograms 
after just a 500-msec exposure (6). Importantly, for these 
purposes, they can perform this task with the images of 
the breast contralateral to the lesion (7) and, like the 
DL described here, human experts can classify images as 
normal or abnormal at above-chance levels even when 
those images were acquired 3 years before the diagnosis 
of breast cancer (8). These human observer studies have 
been modeled on studies of so-called gist perception in 
the vision science literature. Those studies show that 
an exposure time of a fraction of a second is all that is 
needed for humans to extract basic semantic informa-
tion about a scene (eg, is this natural or man-made? Is 
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an animal present? Is this scene navigable? [9]). Now that it 
has been shown that some so-called gist of cancer risk can 
be detected years before the cancer is diagnosed, new experi-
ments can try to optimize this ability, perhaps by encourag-
ing the radiologist to formally assess the gist or texture of the 
breast as part of the effort to assess the patient’s risk.

Similar to the DL algorithm, this human gist perception is 
detecting something beyond a simple density measure (6–8). 
With both the human and DL capabilities, we are not sure 
what signal is detected. DL results are not easily explainable 
to humans. DL methods are so-called black boxes that pro-
vide little guidance about why conclusions were reached. Yala 
et al (2) do not speculate on what exactly makes one mam-
mography image predictive of the future occurrence of breast 
cancer. Further research is needed to uncover the signals sup-
porting the DL and human abilities. If radiologists and DLs 
are uncovering different signals at mammography, there is 
potential for further improvement in a hybrid human-DL 
system or a DL algorithm that learns the signal that human 
experts use. We suggest that more rapid progress will be made 
if the hybrid models combine not just DL and clinical data 
but also combine human and machine capabilities.

Effort to make deep learning (DL) methods fully explain-
able is an area of active research in academia and industry 
(10). At the moment, it is unclear whether DL methods will 
ever be fully explainable. Are we willing to follow computer 
recommendations in radiology without completely under-
standing them if we know that they provide sound advice? 
This is a complex, multilevel question that we in the commu-
nity must be asking at the dawn of an era when artificial in-
telligence will be affecting decision making in radiology and 
health care. There can be little doubt that more deep learning 
studies will produce further advances of the sort described 
by Yala et al (2). The effect of DL on patient outcomes is yet 
to be demonstrated. As a community, we must learn how to 
embed and use these technologies in clinical care and how to 
synergistically use DL and human visual perception to build 

confidence and trust in DL systems in radiology, including in 
mammogram-based breast cancer risk assessment.
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