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ABSTRACT

Serial models of attentional deployment in visual
search have traditionally assumed sampling without
replacement. Each item in a search array was thought
to be selected only once, and rejected distractors were
never revisited, This efficient search pattern requires
some form of high-capacity memory for every deploy-
ment of attention. Several investigators suggested that
inhibition of return served to implement this memory
(see Chapter 16). Recently, this assumption has been
challenged on several fronts. Experiments using the
randomized search paradigm, search for multiple
targets, and attentional reaction time methods suggest
that search often uses sampling with replacement.
Studies of eye movements have yielded a range of
findings, from perfect memory to substantial evidence
for resampling. Simple strategies can reduce the prob-
ability of resampling without positing high-capacity
memory. Such strategies carry a cost in terms of speed
and may explain the oculomotor data. Memory for
rejected distractors in visual search is likely to be of
limited capacity, similar to other aspects of visual
memory.

I. SAMPLING IN VISUAL SEARCH

How is attention deployed during search of a clut-
tered scene? We know that the salience of objects in the
present drives attention, whether salience derives from
intrinsic properties (bottom-up, see Chapters 38, 39,
43, 93), or task relevance (top-down, see Chapters 12,
14, 18, 40, 96). Furthermore, it has long been assumed
that past attentional deployments determine future
deployments, in that attention is assumed to avoid
objects that have already been searched. In the lan-
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guage of probability theory, visual attention is
supposed to use sampling without replacement from
the search array. We can use a simple urn model to
illustrate the difference between sampling with
replacement and sampling without replacement.
Imagine we are looking for the red marble in an urn
that contains 1 red marble and 20 blue marbles. Using
sampling without replacement, we would set aside
each marble after determining its color. If we were
sampling with replacement, however, we would
return the marble to the urn before pulling the next
marble, thus making it likely that we would pull the
same marble from the urn more than once. Sampling
without replacement is clearly more efficient, which
presumably explains why it was the default assump-
tion for theories of search.

A. The Standard Model

This assumption is explicit in a wide range of search
models that employ a serial component (see Chapter
43). Despite their differences, all of these models state
that attended items are never resampled. Moreover,
the assumption is implicit in many other papers. For
instance, the routine claim that a serial model should
produce a 2:1 ratio of target absent to present slopes
is based on this assumption. Therefore, we will call the
sampling without replacement option the Standard
Model.

Under the Standard Model, as each distractor is
rejected, it is somehow “marked” or inhibited. Conse-
quently, the probability of detecting the target in a
given epoch increases during the course of the search.
For example, assume a standard search task in which
there is one target among d distractors. Further assume
that all items are equally salient. In the first epoch, the
probability of detecting the target is 1/d. In the second
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epoch, the probability is 1/(d - 1), and so forth. Thus,
the “hazard function” rises exponentially during the
course of the search, reaching 1.0 in the dth epoch.

Models that do not employ a serial attentional com-
ponent are formally equivalent to the Standard Model
for present purposes if they produce an increasing
hazard function.

The time to find targets using sampling without
replacement is governed by the negative hyper-
geometrical distribution, and the average number of
samples E(s) to find a target in a display containing ¢
targets and d distractors is given by Eq. (43.1):

F+d+1
t+1

The common claim that “half of the items are searched
before the target is found” derives from this equation.
Ifwesett=1,and N = set size (d + 1) E(S) = (N +1)/2;
on average, (N + 1)/2 items will be sampled before the
target is found.

B. The Amnesic Model

The obvious alternative to the Standard Model is a
model based on sampling with replacement. In such a
model, items would be selected without regard to
whether they had been selected before. Free recall,
for instance, is widely held to proceed by sampling
with replacement from memory. Under sampling with
replacement, only the current salience would deter-
mine the probability of selection. If all objects were
equally salient, selection would be essentially random.
In the human factors literature (Arani, Karwan, and
Drury, 1984; Chan and Courtney, 1998), this has been
termed the random search model, as opposed to the
systematic search model, which corresponds to what we
have been calling the Standard Model here. However,
we prefer the term amnesic search, which emphasizes
the memoryless character of the model.

In contrast to the Standard Model, amnesic models
produce flat hazard functions; the probability of
finding the target is constant over time. In the case of
a single target among d distractors, in each epoch the
model has a 1/d probability of detecting the target. As
a result, there is a small but finite probability that the
target will never be attended.

Sampling with replacement is governed by the
negative binomial distribution, and the number of
samples required to find a target in a display contain-
ing ! targets and d distractors is given by Eq. (43.2):

ES) =1+ % (43.2)

ES) = (43.1)

In the case of a single target, E(S) =d + 1, so the number
of samples needed to find the target is equal to the set

size. Note that this does not mean that every item in
the array is examined; this would be an exhaustive,
memory-driven search. Instead, it is likely that some
items would be examined several times, while other
items might not be examined at all.

C. Other Roles for Memory in Visual Search

In statistics, a process using sampling with replace-
ment is said to be “memoryless” because the state of
the system (here the focus of attention) at any given
time is not affected by previous states of the system.
When we say that visual search is memoryless
(Horowitz and Wolfe, 1998), we do not mean that no
memory is involved in the process of search. On the
contrary, memory is known to be critical to search.
Memory processes and search processes interact on
many levels. These include working memory (see
Chapter 100), as well as implicit contextual guidance
of visual attention (Chapter 40). The claim that search
is memoryless is strictly an argument about whether
the deployment of attention is determined by the
history of previous deployments (or, to put it more
broadly, about the form of the hazard function). Note
that this view is also not incompatible with the idea
that information about distractors is acquired during
search. Subjects may have an accurate memory for the
characteristics of distractors, yet still be unable to
prevent attention from returning to them.

At the same time, memory-driven search does
require some mechanism to prevent attention from
returning to rejected distractors. The dominant
hypothesis in the literature is that inhibition of return
(see Chapter 16) serves this purpose. One could pos-
tulate other mechanisms more like conventional
memory systems. Whatever “memory” structure is
held to underlie sampling without replacement, it
must have a high capacity to keep track of all distrac-
tor locations in a standard visual search experiment.

II. EMPIRICAL TESTS OF THE
STANDARD MODEL

Researchers have studied the question of memory-
driven versus amnesic search (aka systematic versus
random search strategies) since Krendel and Wodinsky
(1960). However, until recently, this debate has taken
place within the applied literature and has had little
impact on the development of mainstream cognitive
theories of search. Recent work in the basic vision
science literature was sparked by the development of
the randomized search procedure by Horowitz and
Wolfe (1998).

SECTION II. FUNCTIONS
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A. Randomized Search

One strategy to determine whether subjects use
sampling with or without replacement under normal
circumstances is to devise conditions under which the
sampling strategy is known and to compare perform-
ance in such a forced condition to performance under
standard conditions, The logic behind the randomized
search procedure is to force subjects to use sampling
with replacement. In the randomized search proce-
dure, each trial consists of a series of search frames.
The stimuli (targets and distractors) are held constant
across frames. In the dynamic condition, however, the
positions of all items are randomly shuffled (within
certain constraints, see below) from frame to frame,
while in the static condition, locations are also held
constant, so that there is in fact no stimulus change
from frame to frame. In the static condition, subjects
are free to use either sampling without replacement or
sampling with replacement. In the dynamic condition,
however, sampling without replacement is impossible
because there is no way for the visual system to know
which distractors in the current frame correspond to
distractors rejected on previous frames. Therefore, on
each frame, search starts anew.

Predictions for the standard and amnesic models
can be derived in a straightforward fashion from Eqs.
(43.1-43.2). Under both models, performance in the
dynamic condition is governed by Eq. (43.2). If there
are n items in the search array, subjects have to
examine an average of n items before finding the
target. In the static case, the standard model holds that
subjects can sample without replacement, which is
much more efficient. To be precise, subjects need to
examine only (n +1)/2 items on average. Thus, the RT
x set size slope in the dynamic condition should be
steeper than that in the static condition by a ratio of
2n:(n + 1), or roughly 2:1. According to the amnesic
model, however, subjects in the static condition are
using sampling with replacement anyway, so there
should be no difference in search efficiency (RT x set
size slope) between the two conditions. Of course, the
two conditions are not identical from a stimulus point
of view. The dynamic condition by definition contains
a variety of dynamic events, onsets and offsets, which
may affect RT. However, these factors should have
their influence on the nonsearch aspects of the task,
and show up in the intercept of the RT x set size func-
tion, Thus, the critical datum is the slope ratio.

Horowitz and Wolfe (1998) found that the slopes for
static and dynamic conditions were not reliably differ-
ent from each other in a range of conditions. These
included versions intended to thwart “sit and wait”
strategies where the subject might fixate at one

location and wait for the randomly replotted target to
appear at fixation (von Muhlenen, Muller, and Muller,
2003). The basic finding was replicated in a number of
labs (Gibson, Li, Skow, Salvagni, and Cooke, 2000;
Kristjansson, 2000). Kristjansson (2000) produced a
notable failure to replicate when he used large set
sizes, However, his stimulus configuration may
have led to more masking in the dynamic condition.
Horowitz and Wolfe (2003) repeated the experiment
with large set sizes under conditions intended to
reduce masking in the dynamic condition. As before,
they found that dynamic and static slopes were
essentially identical. Moreover, RT distributions were
similar across conditions. This should not be the case
if static and dynamic search used different sampling
mechanisms,

Although these data argue against the standard
model, Gibson et al. (2000) used a similar method to
show that, while subjects may not use memory for
rejected distractors to guide subsequent search, they
remember the location of a target when searching for
multiple targets (see also Horowitz and Wolfe, 2001;
Takeda, in press).

Although the substantial similarity between
dynamic and static search is impressive, the random-
ized search method has a number of drawbacks. First,
as noted earlier, the two conditions can never be
equated for stimulus quality, so performance will
never be equalized on all measures. Second, the argu-
ment for amnesic search, at least, relies on accepting
the null hypothesis. Third, the logic of the method will
fail if the search can be completed during a single
frame. Fourth, experiments must be designed in order
to thwart subjects from adopting different search
strategies in the two conditions. In particular, if the
target location is selected randomly on every frame,
subjects may simply monitor a single location or set of
locations and wait for the target to come to them.
Horowitz and Wolfe attempted to circumvent this
problem by restricting the locations at which the target
could appear, though this may not have been entirely
successful (von Muhlenen et al., 2003). Finally, subjects
appear to have difficulty deciding when to give up on
target-absent trials in dynamic conditions, so switch-
ing to a forced-choice design (i.e., one of two targets is
always present) will significantly reduce dynamic
error rates (Horowitz and Wolfe, 2003).

B. Multiple-Target Search

In the classic visual search task, where subjects have
to find a single target, both the standard model and the
amnesic model make similar predictions for the central
tendency of RTs. (Distributions are a different matter,
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see next section.) However, when subjects must find
multiple targets during a single trial, the two models
make quite different predictions. Compare Eq. (43.1)
and Eq. (43.2). As each target is found, the value of
t in the denominator of both equations decreases.
However, the value of d in the numerator of Eq. (43.1)
also decreases as distractors are marked off, so that the
interval between finding targets is constant for the
Standard Model. In contrast, the value of d in Eq. (43.2)
is constant, so that in the amnesic model, the intervals
increase nonlinearly.

Of course, measuring multiple RTs during a single
trial is problematic, so Horowitz and Wolfe (2001)
devised a method in which subjects are asked to report
as soon as they know that there are at least n targets in
a display containing m targets. Both n and m are varied
across trials (n across blocks in this case). The RT x n
function for constant m is a proxy for the RTs to m suc-
cessive targets.

Horowitz and Wolfe, using alphanumeric stimuli
(digit targets among letters), found that this function
is highly accelerated, disconfirming the standard
model. However, Takeda (in press), noted that the
search rate may depend on n, possibly due to memory
load. The interaction of working memory (see
Chapter 102), and visual search is not entirely clear.

C. Cumulative Distribution Functions

Since the Standard Model and the amnesic model
have different hazard functions (section I), they
also have different cumulative distribution functions
(CDFs). Sampling without replacement will yield
linear CDFs, which reach 1.0. Sampling with replace-
ment will produce exponential CDFs, which approach
but never quite reach 1.0, since there is always a chance
that the target will not be located (Krendel and Wodin-
sky, 1960). Visual search studies in the mainstream
cognitive literature rarely report CDFs. However,
fitting CDFs has been a popular method to distinguish
between random and systematic search in the human
factors literature. A number of papers have reported
exponential CDFs in visual search (e.g., Chan and
Courtney, 1998), though linear CDFs have also been
reported.

As Chan and Courtney (1998) noted, RT CDFs have
two components: the search time (which may be dis-
tributed linearly or exponentially), and a nonsearch
time (including response time), which is normally dis-
tributed. They found that search RTs are well described
by the ex-Gaussian distribution, in which a normal dis-
tribution (representing nonsearch time) is convolved
with an exponential (representing search time).

Horowitz, Wolfe, and Alvarez (see discussion in
Horowitz and Wolfe, 2003) attempted to measure the
search CDF directly, eliminating the nonsearch com-
ponent. Subjects searched for a mirror-reversed letter
and reported its color. The colors of all items changed
at some time T during the search. The dependent vari-
able was the probability p(T) that the subject reported
the initial color of the target. Plotting p(T) against T
yielded the CDF for the search process. This function
was exponential, supporting an amnesic account of
search.

I1I. MEMORY IN THE
OCULOMOTOR DOMAIN

Although the issue is not settled, the balance of the
data suggest that covert deployments of attention are
not guided by memory for prior deployments. What
about overt deployments of the eyes? As we noted
above (see Chapter 16) IOR has been proposed as an
inhibitory tagging mechanism to support sampling
without replacement in search, and has been tightly
linked to the oculomotor system. Therefore, one
might expect that eye movements would be memory-
driven. Indeed, eye movements tend to be biased away
from the previous fixation locations (see Chapter 16).
On the other hand, Horowitz and Wolfe (2003)
employed the randomized search method using small
stimuli that required fixation and found no difference
between the slopes of static and dynamic functions.
Measurements of CDFs for oculomotor search support
a memoryless account (Scinto, Pillalamarri, and
Karsh, 1986).

The most obvious way to assess whether eye move-
ments sample a visual search stimulus with or without
replacement might be to record fixations and see
whether or not items are revisited. A number of
researchers have taken just such a straightforward
approach. Peterson et al. (2001) reported that the
hazard function to fixate a search target in an oculo-
motor search task was increasing rather than flat,
indicating as their title stated that “visual search has
memory,” at least in the oculomotor domain, The ques-
tion is not as easily resolved as one might think.
Gilchrist and Harvey (2000) pointed out that much
depends on the algorithm used to determine which fix-
ations are counted as refixations. They arrived at a
figure of 50 percent refixations for their task, but sug-
gested that this may have been an overestimation.
Moreover, the search tasks used in these experiments
seem to be particularly inefficient and may have
encouraged subjects to use an ordered pattern of eye
movements; “reading” a display is one example.

SECTION 1. FUNCTIONS
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IV. THE COST OF
SYSTEMATIC SEARCH!?

Why don’t all searches use a systematic pattern
of attentional deployments? This could provide the
benefits of the standard model without the demand
for perfect memory. If sampling without replacement
could be accomplished by shifting attention or the eyes
in a predetermined scanpath, then the only memory
required would be memory for which direction to
move in, You are using such a scanpath in reading this
article. Why don’t subjects simply scan search arrays
left-to-right, in an expanding spiral, or some other effi-
cient search pattern?

Wolfe, Alvarez, and Horowitz (2000) have demon-
strated that when subjects are required to search sys-
tematically (e.g., clockwise around a circular array),
search rates are slow (-300ms/item), compared to
control conditions in which search strategy is uncon-
strained. Although systematic search is efficient in
terms of the number of samples required, the cost in
terms of search rate appears to be too great for displays
in which rapid, covert deployments of attention are
possible. When search rate is limited to the slower rate
of overt deployments of the eyes, systematic search
may become a viable option.

V. LIMITED-CAPACITY MEMORY?

Memoryless search and the standard model are
really two ends of a continuum. It is possible that there
is some, imperfect memory for rejected distractors.
The experiments that falsify perfect sampling without
replacement do not falsify limited or fallible memory
systems. Indeed, a successful limited-capacity model
might resolve many controversies in this area. Two
versions of this solution have been proposed so far.
Horowitz and Wolfe (2001) introduced a buffer model
in which attention was prevented from orienting to the
¢ most recently examined items, but the remaining
arrays items were sampled randomly, even those that
had been sampled in the past. After each item was
attended, whichever item had been attended ¢ + 1
samples back was dropped off the stack, and the
current item was added. For the first ¢ samples, this
model followed the Standard Model and afterward
behaved as an amnesic model with the set size reduced
by ¢ items. This compromise model was a better fit to
their data. The average estimate of ¢ was three items
for their subjects. (Note that substantially larger esti-
mates were obtained by Takeda, in press.) A similar
model was used to fit CDFs by Horowitz, Wolfe, and
Alvarez (see discussion in Horowitz and Wolfe, 2003),

who arrived at an estimate of one to two items. A
similar account of memory for overt shifts of attention
was proposed by McCarley et al. (2003), who observed
a buffer size of three to four items. Moreover, recent
work suggests that inhibition of return can be meas-
ured for the last five to six attended items.

An alternative conception is the variable memory
model of Arani, Karwan, and Drury (1984). Instead of
allocating a fixed capacity, Arani et al. proposed that
subjects might fail either to encode or to retrieve
attended locations, and that re-fixation or re-attending
might occur through such forgetting.

VI. GENERAL CONCLUSIONS

It seems likely that the Standard Model is wrong,.
Current research is developing a more nuanced and
precise understanding of the degree to which rejected
distractors are remembered in visual search and the
mechanisms that might underlie such a memory.
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