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Humans can extract surprisingly complex semantic and statis-
tical information from complex scenes that are presented very 
briefly or with limited focused attention. Within 200 ms, 
observers can assess the mean and distribution of size (Chong 
& Treisman, 2003), orientation (Parkes, Lund, Angelucci,  
Solomon, & Morgan, 2001), and other basic visual attributes 
(Chubb, Nam, Bindman, & Sperling, 2007; Melcher & Kowler, 
1999) for arrays of many objects without needing to attend to 
each object. Within 120 ms, observers are still able to identify 
aspects of the meaning, or “gist,” of a novel scene (e.g., picnic 
or birthday party; Potter & Faulconer, 1975), as well as to rec-
ognize small objects (Fei-Fei, Iyer, Koch, & Perona, 2007) or 
report their locations and spatial relations (Evans & Treisman, 
2005; Tatler, Gilchrist, & Rusted, 2003). Even with shorter, 
masked viewing durations (19 to 50 ms), observers are able to 
classify a scene at basic (e.g., lake vs. forest) and superordi-
nate (e.g., natural vs. urban) levels (Greene & Oliva, 2009; 
Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007), and they can 
determine how pleasant it is (Kaplan, 1992). Furthermore, 
large objects can be identified (Thorpe, Fize, & Marlot, 1996; 
VanRullen & Thorpe, 2001), even when focused attention is 
engaged with another foveal task (Li, VanRullen, Koch, & 
Perona, 2002). We refer to properties that can be reported 
accurately under such circumstances as nonselective, because 
they can apparently be perceived without directing selective 
attention to individual objects (even though selective attention 
to individual objects is required by similar, seemingly simpler 
tasks; Vickery, King, & Jiang, 2005).

The existence of such nonselective processing has inspired 
a set of feed-forward models of visual processing in which 
quite complex properties can be extracted from the initial 
sweep of neural activity from retina to cortex, without feed-
back or other top-down influences (Fukushima & Miyake, 
1982; Itti & Koch, 2001; Riesenhuber & Poggio, 2000;  
Rousselet, Thorpe, & Fabre-Thorpe, 2004; Serre, Oliva, & 
Poggio, 2007; Thorpe, Delorme, & Van Rullen, 2001). Some 
researchers have extrapolated from such models and results to 
the conclusion that the visual system automatically computes 
multiple nonselective properties at the same time (Rousselet  
et al., 2004; Serre et al., 2007). This conclusion comports well 
with the introspective impression that the visual world is rich 
and detailed, even in a single glance.

However, this conclusion is not necessarily warranted by 
the data, and introspection is not definitive evidence. It is 
important to keep in mind that in most of the experiments just 
cited, observers were asked to report repeatedly on only one or 
two properties over many trials (e.g., Is there an animal in the 
scene?), and these properties were specified well in advance. 
One could explain the existing data equally well by assuming 
that only a small number of nonselective filters can be applied 
to the feed-forward visual data stream; although the number of 
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potential filters may be large, maybe they cannot all be active 
simultaneously. Indeed, one might imagine that trying to 
extract more than one nonselective property from the same 
brief image might lead to destructive interference between fil-
ters, such that selective attention to one property is required in 
order to disambiguate the information.

Can two or more properties be extracted in a single nonselec-
tive step? Suppose that two questions are asked about the same 
image: Is there an animal present? Is this a beach scene? It 
seems possible that the feed-forward sweep of information 
could provide answers for both of these questions. Alternatively, 
the system might need to be configured in advance to direct the 
information to one or the other classifier. Of course, one can 
also imagine intermediate states between these extremes. We 
conducted a series of experiments to investigate this issue. The 
results presented here support three conclusions: First, multiple 
nonselective calculations can occur simultaneously; second, 
these calculations interact with each other; and third, the nature 
of the interaction (i.e., whether it is constructive or destructive) 
depends on the structure of the task.

Experiment 1
Can observers monitor a briefly presented scene for multiple 
properties simultaneously? Previous studies have employed 
only one or two predetermined target categories (e.g., animals 
or people). In Experiment 1, we employed nine different gist 
categories that could be used to label the stimulus scenes (ani-
mal, human, vehicle, bridge, flower, mountain, beach, street, 
or indoor scene). The cued category varied randomly from 
trial to trial, and cues were given in advance of the stimulus on 
some trials (precues) and after the stimulus on others 
(postcues).

Method
Observers. Ten observers (5 females, 5 males; age range = 
19–42 years) were recruited from the Brigham and Women’s 
Hospital subject pool. Each observer passed the Ishihara 
(1987) test for color blindness and had normal or corrected-to-
normal vision. All observers gave informed consent, as 
approved by the Partners Healthcare Corporation Institutional 
Review Board and were compensated for their time.

Stimuli and apparatus. All experimental stimuli were drawn 
from a set of 2,664 colored photographic images of natural 
scenes and a corresponding set of 2,664 colored texture syn-
thesis masks created using Portilla and Simoncelli’s (2000) 
algorithm. Of the 2,664 photographs, 900 depicted only one of 
our categories; 864 depicted two of the categories (e.g., a 
human on a beach), with all possible pairs equally represented; 
and the remaining 900 did not depict any of the nine catego-
ries. The images were obtained primarily from a public image 
data set hosted by the Computational Visual Cognition Labo-
ratory (n.d.) at the Massachusetts Institute of Technology); 

some additional images were selected from other Web and 
personal archives. The stimuli subtended 13° × 13° of visual 
angle at the viewing distance of approximately 57.3 cm. Stim-
uli were presented on a 21-in. monitor (resolution: 1024 × 
768; refresh rate: 75 Hz) controlled by a Macintosh G5 com-
puter running Mac OS 10.4. The experiment was controlled by 
MATLAB 7.5.0 and the Psychophysics Toolbox Version 3 
(Brainard, 1997; Pelli, 1997).

Procedure. Each trial consisted of a rapid serial visual presen-
tation (RSVP) of six images. Following an initial 300-ms fixa-
tion, the six images were presented sequentially, for 20 ms 
each (Fig. 1a). The second of these images was the photo-
graphic scene, and the remainder were synthesized texture 
masks derived from the statistical properties of other scenes in 
the image set. Each scene was unique.

Observers were asked to indicate whether or not a specified 
cued category appeared in the RSVP stream. We compared a 
condition in which the target category was named before the 
stream of images (precue) with a condition in which it was 
named after the stream (postcue). Precues were presented for 
800 ms before the initial 300-ms fixation preceding the RSVP 
stream, and postcues were presented for 800 ms before the 
final response-request display. On each trial, the observer was 
cued with a target category randomly selected from the nine 
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Fig. 1. Stimuli and results from Experiment 1. On each trial, a photograph of a 
natural scene was presented within a stream of synthesized texture masks (a). 
Observers were asked whether the scene represented one of nine possible 
categories (animal, human, vehicle, bridge, flower, mountain, beach, street, or 
indoor scene). The category to look for was indicated either before (precue 
condition; illustrated here) or after (postcue condition) the stimulus stream. 
The graph (b) presents the signal detection sensitivity parameter, d′, as a 
function of condition. The dashed line represents the value of d′ at chance. 
Error bars represent standard errors of the mean.
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Weighting of Evidence in Rapid Scene Perception 3

possible categories (animal, human, vehicle, bridge, flower, 
mountain, beach, street, or indoor). The target category was 
present on 50% of the 1,800 trials.

Data analysis. We converted accuracy to d ′ because d ′ is 
theoretically independent of an observer’s bias to respond 
“yes” or “no.” To test the hypothesis that observers monitored 
for only one category at a time, we calculated the expected d′ 
for the postcue condition by assuming that when observers 
happened to monitor the correct category, their performance 
would be equal to that observed when the same category was 
precued, but when they monitored the wrong category, their 
performance would be at chance. We computed this predicted 
d ′ from the observed d ′ in the precue condition and the 
observed criterion (c) in the postcue condition according to 
Equation 1:

In this equation, z refers to a z-score computation, Φ to the 
area under the cumulative normal distribution, and n to the num-
ber of categories. The logic is as follows: One computes d ′ by 
taking the z score of the hit rate and subtracting the z score of 
the false alarm rate (Macmillan & Creelman, 1991), so in order 
to compute the predicted d ′, one needs to know the predicted 
hit and false alarm rates under the hypothesized scenario (i.e., 
observers were monitoring for one category at a time). In order 
to generate these predicted hit and false alarm rates, we work 
backward from the observed d ′ in the precue condition, which 
estimates the observer’s sensitivity when monitoring a single 
category. Computing the area under the normal distribution 
(indicated by Φ) at (d′precue /2) gives the expected hit rate (at a 
neutral criterion, c) for the category that the observer is moni-
toring. Of course, the actual hit rate depends on the criterion. 
The observed criterion for the postcue condition, cpostcue, turns 
out to be a good estimate of the hypothetical criterion when 
the observer is monitoring a single category, so the expression

                            
gives the predicted hit rate when the 

observer happens to be monitoring the correct category. If the 
observer is monitoring the wrong category, performance will be 
at chance, giving a d′ of 0 and a hit rate of .5 at a neutral criterion. 
The hit rate is again adjusted according to cpostcue. Multiplying 

this chance value by (n – 1) and dividing the whole by n weights 
the chance component by the number of nonmonitored catego-
ries. The same logic holds for the computation of the predicted 
false alarm rate.

Results and discussion

Unsurprisingly, performance was significantly better with a pre-
cue than with a postcue, t(9) = 9.30, p < .01 (see Fig. 1). The 
advantage for the precue condition is evident not only from d′, 
but also from percentage correct; accuracy was 83% (SEM = 
1%) in the precue condition and 76% (SEM = 2%) in the post-
cue condition. More important, performance in the postcue con-
dition was well above chance, t(9) = 8.69, p < .01. In the postcue 
condition, did observers perhaps try to guess which category 
would be cued, monitor that category (as in the precue condi-
tion), and respond at random on trials when they guessed 
wrong? Under this scenario, Equation 1 predicts a d ′ of 0.20, 
which is significantly less than the observed d ′ of 1.48, t(9) = 
14.36, p < .000001. Our results therefore imply that observers 
can monitor for multiple scene categories simultaneously.

Experiments 2 and 3
What happens when more than one potentially relevant cate-
gory is present in a scene? For example, is an animal on a 
beach more difficult to recognize than an animal in another 
setting if “beach” is a cued target on other trials? To answer 
this question, in Experiments 2 and 3, we added critical trials, 
which contained more than one potential target category.

Twelve observers (5 females, 7 males; age range = 19–45 
years) participated in Experiment 2, and 16 observers 
(7 females, 9 males; age range = 20–52 years) participated in 
Experiment 3. The task was the same as in Experiment 1: to 
indicate whether a single specific pre- or postcued target cat-
egory was present in a scene (Fig. 2a). Each critical scene con-
tained instances of both the category cued as the target for that 
trial (the trial-relevant category) and another category that 
was relevant to the task but not cued for that trial (a task-
relevant category). Thus, for example, in the case of a critical 
scene of an animal on a beach, if  “beach” was the trial-relevant 
(target) category, “animal” was a task-relevant category 
(because it was the target category on other trials); alterna-
tively, if “animal” was the trial-relevant (target) category, 
“beach” was a task-relevant category. There were four trial 
types defined by the categories present: (a) both a trial- 
relevant and a task-relevant category present, (b) only a trial-
relevant category present, (c) only a task-relevant category 
present, and (d) no relevant category present. In Experiment 2, 
exposure duration was fixed at 20 ms (as in Experiment 1), 
whereas in Experiment 3, we varied exposure durations from 
20 to 200 ms. We report accuracy rather than d ′, as it is unclear 
how to compute d′ when there are multiple types of target-
absent trials (i.e., the last two trial types).
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Fig. 2. Stimuli and results from Experiments 2 and 3. The examples in (a) illustrate the four trial types, defined 
by whether a task-relevant but uncued category (e.g., animal, beach) was present and whether the cued (trial-
relevant) category was present. When the scene included images belonging to both the cued, trial-relevant 
category and the uncued, task-relevant category (examples highlighted by the red frames), one category was cued 
for some observers (randomly determined), and the other was cued for the other observers. The graphs show 
(b) mean accuracy as a function of trial type and condition (precue or postcue) in Experiment 2 (N = 12) and 
(c) mean accuracy as a function of trial type and exposure duration in Experiment 3 (N = 16). Error bars represent 
standard errors of the mean. Asterisks indicate a significant difference between trial types (p < .05).
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The most important finding is that the observers in Experi-
ment 2 were at chance in reporting the presence of the trial-
relevant category if the image also contained an uncued 
task-relevant category (see Fig. 2b for results for the four trial 
types). This was true not only when the target category was 
postcued (testing deviation from chance), t(11) = –0.73, p = 
.48, but also when the target category was precued, t(11) = 
1.75, p = .10. For example, the presence of an animal made 
observers significantly less likely to successfully report a 
beach, even when “beach” was cued as the target before the 
presentation of the scene. All categories interfered with each 
other equally. In Experiment 3, this destructive interference 
was observed for all exposure durations less than 200 ms (Fig. 
2c). Performance was at chance at the 20-ms exposure and 
above chance but still impaired at the 40-ms exposure, t(13) = 
4.66, p < .01. By the 200-ms exposure, there was no interfer-
ence effect (one category: 93% correct, SEM = 1%; two cate-
gories: 90% correct, SEM = 2%), t(13) = 2.03, p = .07. Thus, 
in Experiments 2 and 3, categories collided destructively.

Experiment 4
Perhaps the interference observed in Experiments 2 and 3 was 
due to the scenes with two categories being more complex 
than the others. In the next series of experiments, we tested 
this possibility by manipulating whether the second category 
in the critical scenes was task relevant or not. In Experiment 4 
(20 observers; 10 females, 10 males; age range = 19–36 years), 
the stimuli were the same as in Experiment 2. In this experi-
ment, only the precue condition was included. There were six 

possible target categories. In the first block of trials, only three 
(randomly chosen for each observer) of these categories were 
cued and therefore task relevant. In the second block, all six 
categories were cued and therefore potentially relevant, but 
during the first block, observers had no way to know that the 
other three categories would become relevant later. In this 
experiment, there were six trial types (see Fig. 3): (a) both a 
trial-relevant and a task-relevant category present, (b) both a 
trial-relevant and a non-task-relevant category present (Block 1 
only), (c) only a trial-relevant category present, (d) only a 
task-relevant category present, (e), only a non-task-relevant 
category present (Block 1 only), and (f) none of the six catego-
ries present. Consider an image containing a beach and an ani-
mal on trials in which “beach” is the trial-relevant target. The 
critical comparison would be between such a trial in Block 1, 
when animals were never targets, and in Block 2, when ani-
mals were targets on one sixth of the trials.

Percentage correct for the six trial types in Blocks 1 and 2 
is presented in Figure 3. The critical result is that performance 
dropped significantly from 73% (Block 1) to 56% (Block 2) 
on trials in which the target category was paired with a cate-
gory that became task relevant in Block 2 only, t(19) = 12.83, 
p < .01. Thus, nontarget categories interfered only when they 
were task relevant. Data from Block 1 also indicate that inter-
ference was induced by task relevance rather than scene com-
plexity. Performance was 54% correct when trial- and 
task-relevant categories were present in Block 1 and 73% cor-
rect when essentially equivalent images were presented but 
the second category was not currently task relevant (cf. the 
first two columns in the upper row of Fig. 3). Note that 

Nontarget 

Target

Mountain
(Relevant in Both Blocks)

Animal
(Silent in Block 1,

Relevant in Block 2)

No Mountain,
No Animal

Beach 
(Relevant) 54% 57%

649 ms                   674 ms
73% 56%
602 ms                   649 ms

75% 76%
571 ms                   578 ms

No Beach

70% 75%
705 ms                   709 ms

76% 76%
645 ms                   714 ms

76% 79%
652 ms                   648 ms

Fig. 3. Stimuli and results from Experiments 4 and 5. For illustrative purposes, trial types are labeled with reference to 
“beach” as the cued target category, “mountain” as the task-relevant category, and “animal” as the non-task-relevant category 
(in Block 1). Target-present trials are represented in the top row, and target-absent trials are represented in the bottom row. 
The columns represent (in order from left to right) trials with a second category that was task relevant in both Blocks 1  
and 2, trials with a second category that was task relevant in Block 2 only, and trials without a second task-relevant category. 
The numbers at the bottom of the images are percentage correct (Experiment 4) and mean reaction time (Experiment 5); 
results for Block 1 are printed in black, and results for Block 2 are printed in red.
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performance dropped to chance when both trial-relevant and 
task-relevant categories collided in the same trial. Otherwise, 
performance was well above chance. Given that the task- 
relevant and task-irrelevant categories of Block 1 were counter-
balanced across observers, this difference in performance must 
be due to task relevance. Thus, interference between categories 
did not stem from the visual properties of the scenes or from 
factors outside the experiment (e.g., some bias against reporting 
the presence of humans when animals were present).

Experiment 5
In the first four experiments, we used extremely brief presenta-
tions. Experiment 3 showed that the interference effect on accu-
racy was eliminated when the exposure duration was a still 
fairly brief 200 ms. Perhaps the observed interference was an 
artifact of the extremely brief exposure durations. In Experi-
ment 5 (12 observers; 9 females, 3 males; age range = 21–53 
years), observers had unlimited time to view each scene, and 
reaction time was the dependent measure. The design was the 
same as in Experiment 4, except that instead of being presented 
briefly as part of an RSVP stream, scenes were presented 
unmasked until the observer responded. We analyzed reaction 
times from only those trials on which observers responded cor-
rectly and eliminated trials with reaction times less than 200 ms 
or more than 3 standard deviations above the mean.

Figure 3 presents results for the six trial types in Blocks 1 
and 2. Reaction time to the trial-relevant category was signifi-
cantly slower when a task-relevant category was present than 
when the second, uncued category was not task relevant, 
t(11) = 2.69, p < .02. Therefore, the interference observed in 
Experiments 2 through 4 was not just an artifact of rapid scene 
presentation, but also can be seen in reaction times even when 
the images are not masked and participants have an unlimited 
time to view them.

Experiment 6
Perhaps the interference effect was due to observers seeing the 
uncued but task-relevant category at the expense of the cued 
category in the same image. We tested this hypothesis in 
Experiment 6 (20 observers; 8 females, 12 males; age range = 
19–50 years), using the same design as in Experiment 4. After 
reporting whether the precued trial-relevant category was 
present, observers reported if any other categories on a list 
they were given were also present. In fact, missing the cued 
target rendered observers less likely to successfully report the 
second, nontarget category, t(18) = 5.43, p < .01. When cate-
gories collide, the resulting interference is mutually destruc-
tive for the trial-relevant and task-relevant categories.

Experiments 7 and 8
In our first six experiments, we asked observers to report on 
the presence of a single, trial-relevant category. In two final 

experiments, we asked observers to report on the presence of 
two categories at the same time.

Experiments 7 and 8 used the same design as Experiment 2, 
except that two categories were precued simultaneously (the 
postcue condition was not included). In Experiment 7 (12 
observers; 8 females, 4 males; age range = 21–54 years), the 
task was to report if both of the precued target categories were 
present (and condition). There were an equal number of trials 
when the correct answer was “yes” and when it was “no.” In 
Experiment 8 (12 observers; 5 females, 7 males; age range = 
19–45 years), the task was to report if either one of the precued 
categories was present (or condition). Again, there was a 50% 
chance that the correct answer was “yes.” All possible pairs of 
the nine different categories were tested in both experiments.

Figure 4 shows percentage correct as a function of the num-
ber of trial- or task-relevant categories present in Experiments 
2, 7, and 8. Images with no task-relevant categories always 
required a “no” response. Images with two task-relevant cate-
gories always required a “yes.” Images with one target cate-
gory present required a “yes” in Experiment 8 and a “no” in 
Experiment 7. In Experiment 2, the one-category trials always 
showed the target, so “yes” responses were required. Notice 
that the patterns of interaction in Figure 4 depend on task 
demands. In Experiment 2, categories collided in the case of 
two-category images, and performance was reduced to guessing 
on two-category trials. In the and condition (Experiment 7), 
observers reported “no” accurately when no category was 
present, but less accurately when one target was present. Per-
formance was not specifically impaired on two-target, “yes” 
trials. In the or condition (Experiment 8), performance was 
actually facilitated on two-category trials relative to one- 
category trials (e.g., accuracy was higher for a scene of an ani-
mal on a beach than for scenes with just an animal or just a 
beach), t(11) = 12.26, p < .0001. Thus, the presence of a sec-
ond category can be destructive (Experiments 2–6) or con-
structive (Experiment 8).

Conclusion
What kind of model can explain this set of results? Suppose 
that the presence of a category is detected when information 
accumulates to some threshold. Experiments 1 and 2 show that 
nonselective information about multiple categories accumu-
lates in parallel, whereas Experiments 2 through 6 show that 
sometimes information about the presence of one category can 
be taken as evidence against the presence of another. Such use 
of a category’s presence as evidence against the presence of 
another category is a function of the probability structure of 
the experiment. Thus, in a search for a trial-relevant animal on 
a task-relevant beach, information about the beach may be 
taken as negative evidence about the animal. If the scene is 
exposed only briefly (Experiments 2, 4, and 6), “animal” 
information fails to reach the detection threshold, and perfor-
mance is at chance. If exposure is unlimited (Experiment 5), it 
takes longer for this information to reach threshold. When two 
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categories are cued (Experiments 7 and 8), however, the pres-
ence of one category is no longer taken as negative informa-
tion about the other. Indeed, probability summation should 
enhance two-category performance in the or condition because 
a positive response can be generated if information for either 
category reaches threshold.

In sum, multiple nonselective processes accumulate infor-
mation about different properties simultaneously and flexibly. 
The outputs of these processes can interfere destructively or 
constructively, depending on the task at hand. This finding 
might point to some of the limitations of making decisions in 
the proverbial “blink of an eye,” or in the case of “thinking 
without thinking” (Gladwell, 2005). Although remarkable 
amounts of information can be extracted from the world in a 
very brief time, people’s understanding of the contingencies of 
the world clearly influence how they use that information. If 
their underlying theories are wrong, they may let one bit 
of information destroy or accumulate with another in a  
manner that could lead to an incorrect conclusion. “In the 
night, imagining some fear, how easy is a bush supposed a 
bear” (Shakespeare, ca. 1595/1997: Midsummer’s Night 
Dream, Act 5, Scene 1, line 21).
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