Monetary reward and target prevalence in a baggage-screening task
Value optimization in visual search

Riccardo Pedersini¹,² Vidhya Navalpakkam³ Michael Van Wert¹ Todd Horowitz¹,² Jeremy Wolfe¹,²

pedersin@email.bwh.harvard.edu or http://search.bwh.harvard.edu
Funded by the DHS Transportation Security Laboratory Human Factors Program

Are people able to exploit visual search to maximize monetary gain?

- Simulated luggage search task
 - Search for guns and knives (2AFC)
 - Manipulated monetary incentives
 - 4 set sizes (3, 6, 12, 18)
 - Full feedback: practice and experimental blocks

Task without payoffs
- People are fast and accurate
- The decision criterion is in blue

Task with payoffs
- People may trade off accuracy for gain
- The decision criterion is in red

Signal detection model of the ideal observer

The ideal observer maximizes expected value (EV) per trial.

$$EV = v_1 P_H + v_2 P_F + v_3 (1-P_H) + v_4 (1-P_F)$$

- v_i: an outcome from one of the payoff matrices used in the experiments
- P_H: probability of target presence
- P_F: probability of target absence
- P_A: probability of a hit
- P_A: probability of a false alarm

Economic decisions under uncertainty

- People do not maximize EV (Kahnemann & Tversky 1979)

Perceptual decisions under uncertainty

People may maximize EV (Trommelhauser et al. 2006): maximum of the black line

Conclusions

People do not maximize EV in economic decisions, but they do when they can exploit perceptual information.

References